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Abstract— Remote sensing image change detection (CD) is
crucial for disaster assessment, land use change, and urban
management. Most CD methods are realized by CNN and
Transformer. However, these methods are not satisfied with
modeling global dependencies while keeping a low computational
complexity. Recently, the emergence of Mamba architectures
based on state space models (SSMs) can remedy the above
problems. In this article, we propose a visual Mamba-based mul-
tiscale feature extraction network to efficiently interactively fuse
global and local information, which is named as MF-VMamba
(MF: multiscale feature). First, a VMamba-based encoder is
used to extract multiscale semantic features from bitemporal
images. Then, a feature enhancement module (FEM) is proposed
to capture the difference information between images. In addi-
tion, we employ a multilevel attention decoder (MAD) based
on large kernel convolution (LKC) to obtain the information
in spatial and spectral dimensions to realize the informa-
tion interaction between global and local features. After the
sequential processing of these three modules, the discriminative
ability of changing objects is significantly improved. Notably,
the computational complexity of our VMamba-based model
grows linearly, which can significantly reduce the computa-
tional cost. In the experiments, our method performs well on
CDD, DSIFN-CD, LEVIR-CD, and SYSU-CD datasets, with F1
scores and OA reaching 95.69% /88.05% /90.64% /86.95% and
98.97% /96.01% /99.07 % /90.75 %, respectively. The code can be
accessed at https://github.com/121zzy/MF-Mamba.git.

Index Terms— Change detection (CD), high-resolution remote
sensing image, large kernel convolution (LKC), state space model
(SSM), VMamba.

I. INTRODUCTION

ITH the growth of the global population and the
intensification of human activities, land cover, and
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utilization patterns on the Earth’s surface have undergone
significant changes. These changes not only affect the eco-
logical environment, but also have far-reaching implications
for economic development and social stability. For example,
accelerated urbanization has led to the development of agri-
cultural land and forests for use as urban land, and there
is a need to focus on the sustainable use and management
of natural resources. In addition, the frequent occurrence
of natural disasters requires timely and effective monitoring
and assessment of their impacts in order to develop rational
responses. Remote sensing image change detection (CD) refers
to the use of remote sensing data from different periods to
monitor the same geographic area, to extract and describe the
change features of objects or phenomena of interest, and to
quantitatively analyze and judge their changes. This method
has a wide range of applications in many fields, such as land
use change [1], [2], natural disaster detection [3], [4], and
urban land management [5], [6], [7].

With the development of remote sensing technology, the
emergence of hyperspectral remote sensing images (HRSIs)
and very high-resolution (VHR) images has greatly contributed
to the advancement of automated remote sensing detection
techniques. Lv et al. [8] and [9] used an adaptive region
approach to measure the change magnitude between bitem-
poral HRSIs, while Wu et al. [10] proposed a multitask
hyperspectral CD framework. These methods fully utilize the
rich spectral information of HRSIs to improve the accuracy
of CD. However, HRSIs impose greater demands on compu-
tational resources due to their large data dimensions and high
computational complexity, while VHR images are still a more
commonly used choice in remote sensing due to lower compu-
tational requirements and more mature processing techniques
in practical applications. Currently, the more mainstream deep
learning models in the field of remote sensing are convolu-
tional neural networks (CNNs) [11] and transformers [12].
CNN can effectively extract local features in the image, such as
edges, texture, and shape. With the focus on spatial and tempo-
ral scales, recent work has focused on increasing the receptive
field of the model by using dilation convolution [13] and
attention mechanisms such as Siamese-based spatial-temporal
attention neural network (STANet) [14], dual attentive fully
convolutional Siamese networks (DASNets) [15], a dual-task-
constrained deep Siamese convolutional network (DTCDSCN)
[16], and the combination of Siamese network and Neste-
dUNet (SNUNet) [17]. Although methods based on attention
mechanisms are able to model global information, they are still
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limited in capturing global contextual information. In contrast,
transformer is able to capture global contextual information
and model long-range dependencies through the self-attention
mechanism. Transformer has amazing semantic expressiveness
and has been applied in various computer vision tasks such as
image classification [18], [19], semantic segmentation [20],
and target detection [21], [22]. vision transformer (ViT) [18]
is the first purely transformer method for image classifi-
cation. Swin Transformer [23] reduces the complexity of
self-attention by shifted window. However, transformer-only-
based models tend to ignore local detailed features. A hybrid
CNN-transformer-based model facilitates the extraction of
global and local information. Chen et al. [24] proposed a
bitemporal image transformer (BIT) that used ResNet as the
backbone network to extract features and proposed BIT to
model contexts within spatial-temporal domain, and achieved
better results.

Despite the advantages, transformer-based models and
hybrid models are more computationally intensive and
resource intensive. Recently, the Mamba model constructed
based on state space model (SSM) [25] has gained much
attention. Mamba [26] aims to achieve linear time complex-
ity and improves the computational speed, and at the same
time, solves the memory challenge of transformer. Mamba is
suitable for larger data processing and real-time processing,
and has certain advantages for high-resolution and large-scale
remote sensing images. The current work based on Mamba
includes VMamba [27], ChangeMamba [28], RS-Mamba [29],
etc. VMamba [27] enhances the effective sensing field in a
specific direction by selective scanning in both horizontal and
vertical directions through SSM, but it is not suitable for VHR
remote sensing images. ChangeMamba [28] proposes three
kinds of visual mamba-based architecture networks for three
different CD tasks. RS-Mamba [29] employs an omnidirec-
tional selective scanning module for better global modeling.

Although all the above methods can effectively improve the
detection accuracy and obtain global information, the detail
information of high-resolution optical images should not be
neglected, and it is necessary to interactively fuse the global
and local detail information to achieve better detection results.
In this article, we propose a VMamba-based multiscale feature
extraction network for remote sensing image CD (simplified
as MF-VMamba). The method utilizes an encoder constructed
by visual mamba for global feature extraction of bitemporal
image pairs, which is conducive to reducing computational
complexity and memory occupation. Meanwhile, a feature
enhancement module (FEM) is introduced to extract the dif-
ference information between images, so as to obtain the local
information effectively. In addition, in order to enable interac-
tion between global and local features, they are simultaneously
fed into a multilevel attention decoder (MAD) based on a
feature pyramid structure as a way to facilitate cross-branch
feature fusion, and finally produce a change prediction map
by a classifier.

The main contributions of our work are summarized as
follows.

1) A VMamba-based CD framework (MF-VMamba) is
proposed to introduce Mamba into the CD task, which is able
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to better extract global and local information in bitemporal
images and capture information in both spatial and spectral
dimensions, contributing to identifying change regions more
accurately while reducing computational costs.

2) A MAD based on feature pyramid structure is designed,
which incorporates the large kernel convolution (LKC) and is
capable of fusing the long-range dependencies of global and
local characteristics of each scale branch to achieve the inter-
action between spatial and channel information, effectively
reducing the edge blurring problem.

3) Extensive experiments are conducted based on four
public datasets, confirming the effectiveness and efficiency of
the proposed approach on information interaction through the
fusion strategy of Mamba and CNN.

II. RELATED WORKS

A. Change Detection

CD has become an important research direction in the field
of remote sensing. Traditional CD methods include pixel-based
and object-based methods, such as regression analysis [30],
image ratio [31], image difference [32], change vector analysis
(CVA) [33], independent component analysis [34], and prin-
cipal component analysis (PCA) [35], [36]. Although these
methods can handle some specific tasks, they are relatively
low in terms of efficiency and detection accuracy. In recent
years, deep learning has been rapidly developing in the field
of remote sensing, and was initially applied to tasks such
as semantic segmentation, target detection, and image clas-
sification, and then was widely applied to CD tasks. In the
early stage, Daudt et al. [37] initially introduced FCN to the
CD field and proposed three models: FC-EF, FC-Siam-conc,
and FC-Siam-diff. To enhance detection accuracy and extract
finer features, Papadomanolaki et al. [38] proposed a fusion
of U-Net [39] and long short-term memory (LSTM) [40] for
extracting both spatial and temporal characteristics from the
image. Cheng et al. [41] introduced a separable deep learning
network (ISNet) consisting of spatial attention module (SAM)
and channel attention module (CAM) to emphasize both
semantic and spatial information. However, data distribution
in CD often suffers from imbalance, and some networks may
struggle to effectively differentiate changed from unchanged
areas. To solve this problem, Hou et al. [42] used HRNet
as the backbone network, taking the difference map of the
bitemporal image and the original image as input. This enables
them to learn features from bitemporal images and capture
temporal information that reflects changes in the image over
time. Chen et al. [15] presented the dual attention fully
convolutional Siamese network (DASNet), which enhanced
model perception of change information through the introduc-
tion of dual attention mechanisms while addressing sample
imbalance issues. Chen and Shi [14] improved remote sensing
image CD performance by introducing a Siamese network and
self-attention mechanism (STANet) along with a multiscale
partitioning strategy to better understand the relationships
between pixels at different positions and times.

Despite significant advances in CNN-based CD techniques,
there are still limitations in modeling long-range dependencies.
With the emergence of transformers, the CD task has taken
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a step forward. Chen et al. [24] proposed a BIT capable of
efficiently modeling the context in the spatiotemporal domain.
Bandra and Patel [43] introduced a Siamese network based
on transformer architecture (ChangeFormer), combining trans-
former encoders and multilayer perceptron (MLP) decoders to
handle remote sensing image CD effectively. This architecture
can capture multiscale features and long-range dependen-
cies. Li et al. [44] proposed a hybrid transformer model
(TransUNetCD) that combines the advantages of transformer
and U-Net to reduce redundant information. Although the
transformer has achieved better results in terms of accuracy
and is able to model global context information, it is computa-
tionally intensive and has a quadratic growth in resource usage.
Recently, the emerging Mamba has become an alternative to
transformers. It is not only less computationally intensive but
also capable of modeling global dependencies, opening up new
possibilities for the CD task.

B. State Space Model

SSM was originally inspired by modern control sys-
tem theory and was widely applied with the emergence
of the S4 [25] model. The combination of SSM and
deep learning improves the ability of the model to cap-
ture long-range dependencies with linear scaling properties.
Gu and Dao [26] proposed a variant called Mamba by
merging the selection mechanism into the SSM, which was
superior to transformer in large-scale data processing, and
then rapidly applied to image classification [21], [45], object
detection [22], medical segmentation, etc. Currently, research
areas based on Mamba for remote sensing images include
image classification (RS-Mamba [29], SpectralMamba [46],
and S2Mamba [47]), semantic segmentation (Samba [48],
RS3Mamba [49], and CM-UNet [50]), hyperspectral denoising
(HSIDMamba [51] and SSUMamba [52]), CD (ChangeMamba
[28] and CDMamba [53]), and object detection. Although
there are many related research fields now, the research on
Mamba is still at a low level, and the research on multitempo-
ral image remote sensing images needs to be further explored.

C. Large Kernel Convolution

LKC is a type of convolution operation in CNNs, which
is characterized by the use of a larger size kernel for feature
extraction. It is different from the traditional attention of a
small kernel; the use of a large kernel means that it can
encompass a larger number of input elements at the same
time and thus capture a larger range of contextual information.
In some cases, the use of LKC can reduce the number
of network layers required, thereby reducing computational
complexity and training time.

The proposal of LKC was inspired by VGGNet [54] by
increasing the receptive field layer by layer; Szegedy et al. [55]
proposed the inception module, which introduced the concept
of LKC with its multibranch structure. Its multibranching
structure introduced the concept of large sum convolution.
Yu and Koltun [56] proposed dilated convolution, which
expands the receptive field without increasing the number
of parameters by introducing a dilation between convolution
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Fig. 1. LKC block. X; denotes the output features of each stage and F;
denotes the enhanced features after the FEM, as shown in Fig. 2.

kernels. Chen et al. [57] proposed atrous spatial pyramid
pooling (ASPP) module, which can significantly increase the
receptive field and feature representation by capturing features
at different dilation rates through multiscale dilation convolu-
tion (i.e., cavity convolution). Ding et al. [58] use 31 x31 LKC,
which can significantly increase the receptive field and feature
expression by capturing the global background and enhance
feature representation. Liu et al. [59] use kernel decomposition
and sparse techniques to extend the kernel size to 51 x 51.
In this article, we use depth-wise separable convolution
(DSC) block [60] (as shown in Fig. 1), which expands the
receptive field by using dilation convolution, and decom-
poses the standard convolution into depth-wise convolution
(DWConv) and point-wise convolution, which greatly reduces
the amount of computation and the number of parameters. This
block is able to capture more global contextual information
and inter-dependencies between features and enhance the fea-
ture representation while maintaining computational efficiency.

III. METHODS
A. Preliminaries: SSM

SSM is a model for describing the state representation of
a sequence at each time step and predicting its next state
based on the inputs. Specifically, the system maps a 1-D input
function or sequence x(¢) € R to an output sequence y(¢) € R
via a hidden state representation h(t) € RE. This system
is usually defined by linear ordinary differential equations
(ODEs) [26]

{ B (t) = Ah(t) + Bx (1) 0

y(1) = Ch()

where A € RV*N and B, C € RV*L are the system matrices.

In deep learning continuous time systems, the continuous
equations have to be discretized in order to improve the
computational efficiency. The discretization of SSM requires
the conversion of the continuous time parameters (A and B)
into their discrete counterparts (A and B) on a specified time
scale (parameter A). This discretization is called a zero-order
hold (ZOH) approach [26]

A=t
{ B= (@A) (e -1)-AB @

{ W (t) = Ah(t) + Bx(r)

3
y(t) = Ch(1). )
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Fig. 2. Overview of the proposed MF-VMamba. X; and Y; denote the output features of each stage.

The Mamba architecture proposes a selective scanning
mechanism based on S4, which is able to dynamically adjust
the internal state of the system based on the input sequences,
for example, filtering out irrelevant information for long
sequence modeling. This can improve computational efficiency
and less memory overhead.

B. Overview

In this section, we introduce the implementation details of
MF-VMamba. MF-VMamba consists of three components,
that is, VSS encoder, FEM, and MAD. Specifically, the
MF-VMamba model extracts features through a weight sharing
encoder based on the VMamba architecture, while the FEM
extracts the difference information of each pair of images
at different scale branches, and the features generated by
the VSS encoder and the FEM are sent to the MAD at the
corresponding scales of the decoder to perform the feature
fusion. After feature extraction and feature fusion at four
scales, the prediction map is generated. The overall structure
diagram of the network is shown in Fig. 2.

C. Encoder Based on Visual SSM

Our proposed encoder is constructed based on
VMamba [27], and the specific structure of the network
is shown in Fig. 3(a). The core block of VMamba is the VSS
block, in which SS2D is the core computational unit of the
VSS block. VMamba is able to perform selective scanning in
both horizontal and vertical directions, and is able to obtain
spatial context information from different directions. The
VSS encoder part is divided into four stages; stage I first
passes the input data through a stem module, and then uses
the VSS block to model the global context information. The
following three stages all first downsample the input data,

and then extract features using the VSS block. The output
features of each stage are denoted by X; and Y;.

The output of VSS block needs to be obtained by summing
the output of two information streams. One stream goes
through a linear layer, a 3 x 3 DWConv, a SiLU activation,
the 2D-selective scan module (SS2D), and the LN function.
Finally, the outputs obtained from the two streams are com-
bined by product, followed by a linear layer that sums the
original inputs to obtain the final output X; or Y;.

D. Feature Enhancement Module

Since the encoder mainly focuses on extracting global
features, some local detail information may be lost. To address
this issue, we introduce an FEM to capture the difference
information of each pair of images across different scale
branches. The detailed structure is shown in Fig. 4. This
module applies difference and summation operations at each
layer of features to enhance feature extraction. The FEM
is applied to each pair of features obtained from the four
stages of the encoder. For clarity, we use the FEM in the
first stage as an example. Let X and Y; represent the features
extracted by the encoder in the first stage from the two input
images, respectively. The FEM first computes the summation
and difference between X; and Y;. The summation integrates
fine local and global information, while the difference captures
the local variations between the two images. Next, the resulting
summed and differenced features pass through a sequence of
operations: a 1 x 1 convolutional layer, followed by a batch
normalization (BN), a rectified linear unit (ReLLU) activation,
a max pooling layer, an average pooling layer, and finally a
fully connected layer. These operations produce two feature
maps Fj; and F.l . Finally, the two enhanced feature maps
are concatenated to form the output feature map F;. This pro-
cess not only preserves both local and global information but

Authorized licensed use limited to: Chengdu University of Technology. Downloaded on December 10,2024 at 01:04:11 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: NOVEL REMOTE SENSING IMAGE CD APPROACH BASED ON MULTILEVEL SSM

4417014

Z f Output \
2! T
%
‘ Upsample
| vss f
E’n Bli‘:k T‘l Linear Block LKC
s : Projection I
N M
LKC LKC
= 4
5
N & | Down SS2D
! Lo 1
Nonlinearity s DWConv Linear \ Xi Fi Yi
Projection \
Linear \ — Linear
Projection \ 50 Projection FEM
3
* \E nly
‘ N : T T T
(@) (b)

Fig. 3. Encoder and decoder part of the overall network structure diagram. The encoder part is mainly based on VMamba, divided into four branches, using
VSS block. The decoder part uses LKC and FEM. (a) Encoder network. (b) Decoder network.
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Fig. 4. Specific structure of the FEM. X; and Y; denote the output features

of each stage.

also strengthens the model’s ability to differentiate fine-grained

details from global structures. The enhanced features from the
FEM can be represented as follows:

A"iﬁ = Relu(BN(Conv(X; — Y)))

Fm = Relu(BN(Conv(X; + Y;)))

. (4)
Fii = FC (MaXPOOI(F ar) + AVGPOOI(F airr))
Fi,. = FC(Maxpool (F',) + Avepool (F%,))

F; = Concat(Fj, Fiy) &)

where X; and Y; denote the hierarchical features extracted
from T image and 7, image through the encoder, Concat(-)
indicates the concatenation operation at the channel-wise, and
Maxpool(-) and Avepool(-) mean the max and average pooling
layer, respectively, Fi and F!  denote the features that are
subjected to the difference and sum operation for each level of
features, and F; denotes the fusion features obtained through

FEM. By applying the FEM at each stage of the encoder, the
model achieves a more comprehensive feature representation,
capturing both global and local information across multiple
scales. This improves the network’s ability to detect subtle
changes and maintain overall context.

E. Multilevel Attention Decoder

We utilize a feature pyramid structure with DSC [60] block,
as shown in Fig. 3(b), to capture spatial and channel position
information, which is used to obtain a wider range of spatial
information and a better understanding of correlation and
contextual information between bitemporal images. Initially,
the features X; and Y; obtained from each stage of the
encoder are paired with the multistage enhancement features
F;, generated by the FEM, to serve as the inputs to the LKC
module. After processing through the LKC, output features
M; and N; are produced. These features M; and N; are then
further processed through another LKC module, followed by
an upsampling operation, to generate the final output features.
LKC is a large kernel convolution containing DSC block (as
shown in Fig. 1). First, we concatenate the two input features;
subsequently, we perform a 1 x 1 convolution operation on
the concatenated feature map F;. After that, we introduce
dilated-wise convolution (DWC) to expand the receptive field
to perform a convolution operation on each input channel to
capture a larger range of contextual information, and use DSC
to linearly combine each output obtained by DWC in the
channel dimension. After squeeze-and-excitation (SE) block,
1 x 1 convolution to obtain M/, finally, the processed feature
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TABLE 1
STATISTICS OF THE FOUR DATASETS, INCLUDING THE NUMBER OF CHANGED PIXELS AND THE NUMBER OF UNCHANGED PIXELS
Dataset ‘ Spatial resolution  Size/image Number of pixels Number of images
‘ Changed pixel =~ Unchanged pixel  Imbalanced ratio

train 83,981,014 571,378,986 1:6.80 10,000

val . 24,676,497 171,800,431 1:6.96 3,000

CDD st | 003 Imipixel 256256 55711739 171,196,761 1:6.74 3.000
total 134,068,750 914,376,178 1:6.82 16,000

train 21,412,341 445,203,349 1:20.79 7120

val . 28,162,258 64,292,596 1:22.83 2048

LEVIR-CD 0.5m/pixel 256x256 6837,335 127,380,324 1:18.63 1024
total 31,065,934 636,876,269 1:20.50 10,192

train 75,030,941 142,655,301 1:1.90 3600

val . 6571,017 14,276,213 1:2.17 48

DSIFN test 2m/pixel 256%256 499,903 2482332 1:5.52 340
total 82,051,861 159,413,846 1:1.94 3988
train 167,833,309 618,598,691 1:3.68 12,000

val . 56,437,798 205,706,202 1:3.64 4000

SYSUCD o 0.5m/pixel 256X256 (1850917 200,323,083 1:3.24 4000
total 286,092,024 1024,627,976 1:3.58 20,000

map M; is fused with the original feature map in a fusion
operation to obtain M;.

By using DSC block, combined with dilated convolution
and SE block, it promotes the interaction and integration of
inter-channel information, facilitates the extraction of spatial
features, and significantly improves the semantic information
between images. At the same time, through the interactive
fusion of different scales, the subtle features of the image can
be captured in the local range, which improves the model’s
ability to perceive the local details, and is conducive to the
reduction of the edge blurring problem.

F. Loss Function

In CD tasks involving remote sensing images, a common
challenge is posed by class imbalance, where the quantity of
changed samples and unchanged samples significantly differs,
and the spatial arrangement of some data is not concentrated.
Under these circumstances, the traditional contrastive loss
function may suffer because it does not specifically take
class imbalance into account. To deal with this problem,
we design a hybrid loss function. It combines the weighted
binary cross-entropy loss and the dice loss. The hybrid loss
can be expressed as follows:

Loss = Lwgcg + Laice (6)
|
Lwgce = N Z[WOYiIOgbA’i) + wi (1 = y)log(1 — 3;)]
i=1
@)
2-Y- softmax(f’)
Ldice = 1= (8)

Y + softmax()? )

where Lwpcg represents the weighted binary cross-entropy
loss, Lgice represents the dice loss. N is the number of samples,
y; represents the model’s prediction for the ith sample, y;
denotes the true label for the ith sample, and w; presents the
weight parameter. In this weighted binary cross-entropy loss

Lwgcg, the weights wy and w; are dynamically calculated
based on the imbalance between changed and unchanged
pixels in the dataset. Specifically, wy is set to the ratio
of total pixels to changed pixels, and w; is the ratio of
total pixels to unchanged pixels. This helps to balance the
contribution of each class in the loss function. Table I counts
the number of changing and unchanging image elements for
the four different datasets. Y indicates the ground truth and Y
represents the change map. The hybrid loss we mentioned can
balance sample pairs of different categories and help prevent
the network from being overly biased in learning unchanged
samples.

IV. EXPERIMENT AND RESULTS
A. Datasets

In this study, four publicly available datasets with
uneven sample distribution were selected, namely, the CDD
dataset [61], the DSIFN-CD dataset [62], the LEVIR-CD
dataset [14], and the SYSU-CD dataset [63]. Statistical infor-
mation about datasets can be viewed in Table I.

1) The CDD dataset [61] is a publicly accessible dataset.
The dataset consists of 11 multitemporal image pairs, of which
7 seasonal variation image sets have a resolution of up to
47502700 pixels and the other 4 image sets have a resolution
of up to 1900 x 1000 pixels. The resolution of the multitem-
poral image pairs ranges from 3 to 100 cm/pixel, thus taking
into account the effects of seasonal variations. To create this
dataset, Ji et al. [64] used random cropping and partial rotation
to transform the images to 256 x 256 pixels. It contains a
training set of 10 000 pairs, a test set of 3000 pairs, and a
validation set of 3000 pairs.

2) The DSIFN-CD dataset [62] is a publicly accessible
binary CD dataset, consisting of 3988 remote sensing image
pairs. These images are from six major cities in China: Xi’an,
Chongqing, Beijing, Chengdu, Wuhan, and Shenzhen. The
dataset covers a variety of land cover changes, including
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water bodies, cultivated land, buildings, and roads. We use the
default clipping samples with a size of 256 x 256, containing
3600 training pairs, 340 test pairs, and 48 validation pairs.

3) The LEVIR-CD dataset [14] is a publicly available
large-scale RS dataset consisting of 637 pairs of VHR images
with a size of 1024 x 1024 pixels and a spatial resolution of
0.5 m/pixel. We crop the default images into non-overlapping
patches of size 256 x 256, and the sample set consists of
7120 pairs of training set, 1024 pairs of test set, and 2048 pairs
of validation set.

4) The SYSU-CD dataset [63] is a large-scale remote
sensing dataset. It contains 20 000 pairs of bitemporal images
with a spatial resolution of 0.5 m, captured at different times,
and includes a variety of objects such as buildings, roads,
ships, and vegetation. The dataset is divided into 12 000 image
pairs for training, 4000 for validation, and 4000 for testing,
providing a comprehensive resource for evaluating CD models.

B. Experimental Setup

Experimental details: All of our comparison experiments,
including the MF-VMamba and ablation experiments, are
realized using PyTorch on a single NVIDIA GeForce RTX
2080 with 11 GB memory workstation. All four datasets
we used were cropped to 256 x 256 pixels, and the data
enhancement methods used include flipping, transposing, and
swapping bitemporal images. During training, we use an Adam
optimizer with an initial learning rate of 0.001, a weight
decay of 5e73, a batch size set to 4, and the number of
training iterations set to 240 000. Validation was performed
every 500 iterations to select the best model weights. Finally,
the model’s accuracy was evaluated on the test dataset.
All comparison methods were implemented in the same
environment, with hyperparameters set to the recommended
values from GitHub. Also, our code can be accessed through
https://github.com/121zzy/MF-Mamba.git.

Evaluation metrics: In order to evaluate the performance
of the proposed model, we apply five key evaluation metrics:
recall (Rec), overall accuracy (OA), precision (Pre), intersec-
tion over union (IoU), and F1 score (F1). The definitions of
the above metrics are as follows:

. TP
Precision = —— &)
TP + FP
TP
Recall = ——— (10)
TP + FN
2 % Precision * Recall
Fl = — (11)
Precision + Recall
TP + FN
OA = + (12)
TP + TN + FP + FN
TP
IoU= —— (13)
TP + FP + FN

where TP, TN, FP, and FN represent the counts of true
positives, true negatives, false positives, and false negatives,
respectively.

C. Comparison Methods
In order to demonstrate the effectiveness of our proposed
method, we have selected some existing CD algorithms
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for comparison, including CNN-based methods (FC-EF [37],
FC-Siam-diff [37], FC-Siam-conc [37], DTCDSCN [16],
SNUNet [17], ISNet [41], SARAS-Net [17]), transformer-
based methods (BIT [24] and ChangeFormer [43]), and
the latest Mamba-based methods (ChangeMamba [28],
RS-Mamba [49], and CDMamba [53]). We use MF-VMamba
to detect changes in the four datasets: CDD, DSIFN-CD,
LEVIR-CD, and SYSU-CD. The quantitative comparison
results of the four datasets are shown in Tables II and III. The
visualization comparison results of the four datasets are shown
in Figs. 5-8. Different colors are used in the figure to indicate
the detection results: white represents TP (i.e., changed), black
corresponds to TN (i.e., unchanged), red indicates FP, and
green indicates FN.

Quantitative results: As can be seen from the comparisons
in Tables II and III, our proposed method, MF-VMamba,
achieves excellent performance on key metrics (e.g., F1,
OA, and IoU) on most datasets. Specifically, MF-VMamba
consistently outperforms traditional CNN-based methods. For
example, on the CDD dataset, the OA of MF-VMamba
is 0.07%, 0.08%, and 0.62% higher than that of SNUNet,
DTCDSCN, and ISNet, respectively. This demonstrates
the advantages of Mamba-based architectures in handling
large-scale CD by integrating spatial and contextual infor-
mation more efficiently. While MF-VMamba performs well
on most datasets, its improvement on the DSIFN-CD dataset
is not significant. On this dataset, MF-VMamba achieves the
OA of 96.01%, which is only 0.42% higher than DTCDSCN.
In addition, ChangeMamba outperforms MF-VMamba in
terms of F'1 score, achieving 90.21%, which is 2.16% higher
than MF-VMamba. This suggests that, while MF-VMamba
provides good performance on high-resolution and diverse
datasets, it may not perform well on datasets with lower spatial
resolution or limited samples. This is because deep learning
models typically rely on large amounts of data for training
to capture complex patterns and improve generalization [23].
Datasets with smaller or poorer quality data may not provide
enough information for the model, resulting in limited model
performance. It performs well on datasets such as LEVIR-CD,
obtaining the highest F'1 score (90.64%) and OA (99.07%),
outperforming all other models. Using the Mamba-based
mechanism and the FEM, MF-VMamba is able to capture
long-range dependencies and complex spatial patterns, which
is crucial for accurate CD in large-scale scenarios such as
LEVIR-CD dataset. On the SYSU-CD dataset, MF-VMamba
has an IoU of 77.59% and an OA of 90.75%. Although it lags
behind CDMamba in terms of F1 scores, it still outperforms
the other models in a comprehensive comparison.

Qualitative results: Figs. 5-8 show the visualization compar-
ison results of some of the methods on the CDD, DSIFN-CD,
LEVIR-CD, and SYSU-CD datasets. It is evident that methods
based on U-Net exhibit more pronounced occurrences of false
negatives and false positives. The introduction of attention
mechanisms significantly mitigates this issue. Although the
methods can generally locate all objects that have changed,
they still struggle with detecting small area samples and
exhibit some challenges in recognizing changes. This may
be due to irrelevant variations caused by seasonal differences
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TABLE I

COMPARISON OF OUR MODEL WITH OTHER METHODS ON CDD, DSIFN-CD, AND LEVIR-CD DATASETS. THE TOP TWO RESULTS ARE HIGHLIGHTED
IN RED AND GREEN. ALL RESULTS ARE DESCRIBED AS PERCENTAGES (%)

Type ‘ Method ‘ cbb

DSIFN-CD LEVIR-CD

| | Pe  Rec Fl

IoU OA | Pre

Rec F1 ToU OA ‘ Pre Rec F1 ToU OA

FC-EF13 | 79.66
FC-Sima-diff;g | 91.36
FC-Sima-concig | 87.19
DTCDSCN2; | 94.93
SNUNeta2 | 95.54
ISNetoo
SARAS-Neta3

55.44
57.22
62.26
93.35
95.15

65.38
70.37
72.65
94.14
95.34

48.57
54.29
57.05
88.93
91.11
91.84
87.33

CNN-based

93.67 92.72 93.19

93.07
94.31
94.47
98.63

98.35
98.26

62.67
68.22
62.18
88.32
84.88
75.63
67.65

66.18
56.87
69.01
86.13
75.01
82.68
67.51

64.38
62.03
65.42
87.21
79.64
78.42
67.58

4747 87.55]79.16
44.96 88.17 | 89.31
48.61 87.60 | 86.21
76.58 92.32
66.17 92.05
67.01 95.19
51.04 90.89

83.26
78.88
86.31
87.32
88.80
94.22
85.98

81.16
83.77
86.26
89.75
90.40
94.70
88.37

68.29 98.12
72.08 98.44
75.85 98.60
81.41 98.98
82.48
90.32
79.16

93.48
88.69
89.01

98.98
98.84

BIT22
ChangeFormera2

95.19
94.20

93.56
94.22

94.37
94.21

89.34

Transformer-based 39.06

98.68
98.63

75.01
88.78

68.30
85.95

71.49
87.34

55.64 92.98
77.53 91.66

90.74
95.76

85.76
89.29

89.23 80.55 98.94

96.44
93.61
94.78
95.46

93.43
93.58
94.90
95.93

9491
93.59
94.84
95.69

90.32
87.96
90.20

ChangeMambagy
RS-Mambagy
CDMambaoy

MF-VMamba(ours)

Mamba-based

98.81
98.49
98.83
98.97

91.23
88.48
87.98

89.21
84.94
83.74

90.21
86.67
85.81

82.17 91.01
76.48 91.11
75.13 91.42

94.39
95.56
95.17
96.01

89.36
88.08
89.42

90.18
89.56
90.41
90.64

82.07
81.06
82.25
82.89

99.01
98.96
99.02
99.07

TABLE III

COMPARISON OF OUR MODEL WITH OTHER METHODS ON THE
SYSU-CD DATASET. THE ToP TWO RESULTS ARE HIGHLIGHTED IN
RED AND GREEN. ALL RESULTS ARE DESCRIBED
AS PERCENTAGES (%)

SYSU-CD
F1

82.08
73.47
84.01
85.64
78.79
85.48
68.92
84.81
86.09
79.52
78.79
87.78

Method ‘
| Pre

83.77
84.16
86.82
87.16
77.60

Type ‘

Rec

80.73
69.97
81.97
84.38
80.02
84.07
63.98
83.67

IoU OA

70.83 87.64
61.00 84.49
73.50 89.20
75.73 90.03
65.00 89.84
75.51 89.96
52.58 86.39
74.55 89.42

90.35

FC-EF;g
FC-Sima-diff; g
FC-Sima-concig
DTCDSCN2q
SNUNetoo
ISNetoo
SARAS-Neta3
BIT22
ChangeFormerao
ChangeMambagg
RS-Mambasy
CDMambagg
MF-VMamba(ours)

CNN-based

74.70
86.16
87.67
82.17
77.60
86.04
87.07

Transformer-based

77.03
80.02
83.70
86.83

66.00
65.00
74.50
77.59

Mamba-based 89.84
89.38

90.75

and lighting conditions. Additionally, because the sample data
(such as vehicles) are relatively small, the detected change
areas remain incomplete and inaccurate. MF-VMamba is able
to partially solve the problem of pseudo-changes, and the
boundaries of the detected change objects are clearer, with
better inter-object semantic consistency. The results from the
CDD and LEVIR-CD datasets demonstrate that MF-VMamba
yields better visual outcomes compared to other networks.
The proposed method effectively reduces the occurrence of
false negatives by learning inter-image feature representations
through global context modeling. However, there are still
shortcomings regarding small sample data. For example, in the
third pair of images in Fig. 6, which features a house in the
upper right corner, our method can only detect a small portion
of the area, while other methods can also identify some parts
but still fail to detect the entire region. Furthermore, as seen in
the visualizations in Fig. 8, our method requires improvement
in the areas with blurred edges.

MF-VMamba excels in multiscale feature extraction while
effectively fusing global context and local detail informa-
tion. CNN-based models (such as SNUNet and DTCDSCN),

TABLE IV

ABLATION EXPERIMENTS ON THE DIFFERENT MODULES ON THE
LEVIR-CD DATASET. ALL RESULTS ARE DESCRIBED
AS PERCENTAGES (%)

FEM MAD BASE | Fl OA IoU
X X v 76.88 9821 62.42
v X v 7746 98.49 63.27
X v v 77.61 98.52 63.48
v v v 90.64 99.07 82.89

although powerful in feature extraction, typically struggle
with long-range dependencies and require deeper networks
to achieve comparable performance. This can lead to issues
such as vanishing gradients or overfitting in complex datasets.
In contrast, transformer-based models (such as BIT and
ChangeFormer) are better suited for capturing global context
but may lack the finely tuned multiscale processing present
in MF-VMamba. This multiscale adjustment is crucial for
datasets with varying resolutions and change scales, such as
CDD and LEVIR-CD. While MF-VMamba performs well
on most datasets, it faces challenges on datasets such as
DSIFN-CD, where imbalanced pixel distribution and smaller
change regions require more precise detection.

D. Ablation Study

To verify the effectiveness of each module of MF-VMamba,
we conducted four ablation experiments as shown in Table IV,
and the visualization results corresponding to each module are
also shown in comparison, as shown in Fig. 9. Our network
consists of three main components, including the VMamba-
based encoder, the FEM, and the MAD. The first row indicates
that it contains only the VMamba-based encoder, and the
decoder that performs simple upsampling, which we call base.
The second row adds the FEM on top of the first row, which
is used to perform detailed feature extraction. The third row
indicates replacing the simple upsampling decoder with MAD
on top of the first row. The fourth row indicates combining
the encoder, FEM, and MAD. As shown in Table IV, the
experimental results outperform the baseline for both adding
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Fig. 5. Qualitative comparisons on the CDD dataset. From (left) to (right): T1 instance, T2 instance, ground truth, FC-EF [37], FC-Siam-diff [37],
FC-Siam-conc [37], DTCDSCN [16], BIT [24], ChangeFormer [43], ChangeMamba [28], RS-Mamba [49], and MF-VMamba (ours). Color scheme: white
represents TP (i.e., “changed”), black corresponds to TN (i.e., “unchanged”), red indicates FP, and green denotes FN.
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T1 T2 Ground truth FC-EF FC-Siam-diff FC-Siam-conc DTCDSCN ChangFormer ChangeMamba RS-Mamba MF-VMamba

Fig. 6. Qualitative comparisons on the DSIFN-CD dataset. From (left) to (right): T1 instance, T2 instance, ground truth, FC-EF [37], FC-Siam-diff [37],
FC-Siam-conc [37], DTCDSCN [16], BIT [24], ChangeFormer [43], ChangeMamba [28], RS-Mamba [49], and MF-VMamba (ours). Color scheme: white
represents TP (i.e., “changed”), black corresponds to TN (i.e., “unchanged”), red indicates FP, and green denotes FN.

Tl T2 Ground truth FC-EF FC-Siam-diff FC-Siam-conc DTCDSCN BIT ChangFormer ChangeMamba RS-Mamba MF-VMamba

Fig. 7. Qualitative comparisons on the LEVIR-CD dataset. From (left) to (right): T1 instance, T2 instance, ground truth, FC-EF [37], FC-Siam-diff [37],
FC-Siam-conc [37], DTCDSCN [16], BIT [24], ChangeFormer [43], ChangeMamba [28], RS-Mamba [49], and MF-VMamba (ours). Color scheme: white
represents TP (i.e., “changed”), black corresponds to TN (i.e., “unchanged”), red indicates FP, and green denotes FN.

a module alone and in combination. For adding only FEM 0.47%/0.73% and 0.85%/1.06%, respectively. When FEM
and MAD, respectively, both F'1 and IoU are improved by and MAD are added in combination, F'1 and IoU improved
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DTCDSCN ChangFormer ChangeMamba RS-Mamba MF-VMamba

Qualitative comparisons on the SYSU-CD dataset. From (left) to (right): T1 instance, T2 instance, ground truth, FC-EF [37], FC-Siam-diff [37],

FC-Siam-conc [37], DTCDSCN [16], BIT [24], ChangeFormer [43], ChangeMamba [28], RS-Mamba [49], and MF-VMamba (ours). Color scheme: white

represents TP (i.e., “changed”), black corresponds to TN (i.e.,

MAD x4
%%
N

Fig. 9. Visualization of features in different modules. FEM denotes feature
enhancement module. MAD denotes multilevel attention decoder. 77 and
T, denote a pair of example images selected on the LEVIR-CD dataset.

by 13.76% and 20.47%, respectively. Meanwhile, from the
perspective of feature visualization (see Fig. 9), when neither
the FEM nor MAD modules are introduced, the extracted
feature contours are relatively blurry and fail to accurately
reflect the changes in the image. When the FEM is introduced
alone, although the extracted features roughly show the con-
tours of the change regions, they still lack sufficient detail.
Furthermore, when only the FEM is used without the MAD
module, the feature information is improved, but, compared to
the combined use of the FEM and MAD modules, the feature
localization accuracy is lower, and it includes more irrelevant
information. When four MAD modules are introduced, the
detected change regions are significantly enhanced: 1) the
feature boundaries are clearer; 2) irrelevant information is
effectively suppressed; and 3) the accuracy of CD is improved.
This significant improvement proves that effective integration
of global and local features facilitates the CD task. With the
addition of the FEM, it is able to better capture local detail
information. With the addition of the MAD module, it is able
to better integrate global and local information, making clearer
structures and edges.

E. Impact of Image Size and Spatial Resolution

The image size determines the coverage and level of detail
of the observed area, and larger image sizes can provide

“unchanged”), red indicates FP, and green denotes FN.
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§ Downsample 4x
» 0.75
0.7
0.65

64 128 256 512
Size

Fig. 10. Performance of the model on different image sizes and downsam-
pling ratios.

information about a wider area and help detect changes over a
large area. However, excessively large image size may increase
computational complexity and processing time. On the con-
trary, overly small image size results in limited coverage
and may lose detail information and contextual information.
Spatial resolution affects the detail clarity and accuracy of
an image. High-resolution images can capture more sub-
tle changes and are suitable for fine-grained CD, such as
urban sprawl or vegetation changes. However, high-resolution
images also bring higher data volumes and computational
requirements that may make data processing more difficult.
Low-resolution images, while reducing the burden of data pro-
cessing, may not capture important details and small changes.

We conducted experiments on the LEVIR-CD dataset using
the kappa coefficient as an evaluation metric. Due to the limita-
tions of the experimental equipment, we tested combinations
of image sizes (64, 128, 256, and 512) and downsampling
ratios (1, 2, and 4). Fig. 10 shows the performance of the
model on different image sizes and downsampling multiples,
and it is found that the model performance is optimal when
the image size is 256 x 256 and the downsampling ratio is 2.
This may be due to the optimal balance of image resolution,
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Fig. 11.  Using different downsampling ratios on the LEVIR-CD dataset of the same size 256 x 256. (a) Downsample 1x. (b) Downsample 2x.
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Fig. 12.

contextual information, and spatial feature capture in this
configuration.

Specifically, with a downsampling ratio of 2, the image
resolution is sufficient to capture small changes and details
while avoiding the noise and computational burden associated
with high resolution. The image size of 256 x 256 provides
enough coverage and contextual information to help the model
accurately understand the changes in the image. In addition,
the moderate resolution and size make spatial features (e.g.,
edges, shapes, and textures) clearly visible, which improves
the accuracy of CD. Also from Fig. 11, it can be seen that the
IoU curve changes more gently during the training process
when the downsampling magnification is 2 at the same size
of 256.

On the contrary, a downsampling ratio of 1 increases the
computational complexity and data processing burden, which
may lead to noise and overfitting, although the image resolu-
tion is higher. A ratio of 4 is too low a resolution, resulting in
insufficient detail and contextual information, blurred spatial
features, and difficulty for the model to accurately recognize
changes. In conclusion, the configuration with an image size
of 256 x 256 and a downsampling ratios of 2 finds the optimal
balance between resolution, contextual information, and spatial
features, resulting in the highest model performance.

V. DISCUSSION
A. Overall Comparison

Fig. 12 illustrates the changes in loss values and OA during
the training and validation processes of our network across
four datasets: CDD, DSIFN-CD, LEVIR-CD, and SYSU-CD.
Overall, as the number of iterations increases, both training
and validation OA show an upward trend, with the training
accuracy slightly higher than the validation accuracy. The loss
values decrease and tend to stabilize over time.

Val OA
0.94

------ Loss = Train OA

=}
o
@

Accuracy

COOOOOOOC
0020000 2000l

Changes in network metrics and loss values for training and validation on (a) CDD, (b) DSIFN-CD, (c) LEVIR-CD, and (d) SYSU-CD datasets.

Specifically, in Fig. 12(a), the CDD dataset shows a rapid
increase in validation OA, approaching 0.99 and stabilizing,
indicating strong model performance on this dataset with
minimal fluctuation in the validation curve. In Fig. 12(b), the
model performs relatively worse on the DSIFN-CD dataset,
particularly in the early stages, where both training and
validation OA curves exhibit significant fluctuation. This may
be attributed to the smaller size of the dataset, which leads
to insufficient training. However, as iterations increase, the
curves tend to stabilize, with the validation OA leveling off
around 0.96, and the loss value also showing a downward
trend toward equilibrium. Fig. 12(c) reveals that, on the
LEVIR-CD dataset, the OA curve stabilizes and rises steadily
after 40 000 iterations, with the validation OA settling at
approximately 0.991. The loss value fluctuates around 0.12,
indicating stable performance of the model on this dataset.
In Fig. 12(d), for the SYSU-CD dataset, the larger and more
diverse sample size results in slower improvement in validation
OA, with significant fluctuations observed. Nevertheless, the
overall trend is upward, with the validation OA eventually
approaching 0.91, and the loss value gradually decreasing and
stabilizing. In summary, the experimental results across these
four datasets demonstrate that our proposed network exhibits
good convergence behavior, with loss values and OA curves
stabilizing in the later stages of training. This indicates that
the model has strong generalization ability and robustness.
These results validate the effectiveness of the network for
remote sensing image CD tasks across a range of dataset types,
particularly in handling more complex and diverse data.

B. Parameter Comparison

To further validate the computational efficiency of the
model, Table V and Fig. 13 provide a comprehensive com-
parison of model parameters and computational costs for
various methods applied to remote sensing image CD on the
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TABLE V

COMPARISON OF MODEL PARAMETERS AND COMPUTATIONAL COSTS ON
THE LEVIR-CD DATASET

Methos | Params GFLOPs
FC-EF 1.35 14.31
FC-EF-conc 1.54 21.32
FC-EF-diff 1.35 18.91
DTCDSCN 31.25 52.89
SNUNet 12.03 21.33
ISNet 14.36 23.58
SARAS-Net 56.89 139.9
BIT 3.49 42.53
ChangeFormer | 41.03 211.15
ChangeMamba | 85.53 179.32
RS-Mamba 52.73 95.74
CDMamba 12.71 151.23
ours 57.84 94.06
@ ChangeFormer H‘%-O
0 ChangeMambal
175 .
CDMamba 98.8
150 [ ] SARAS-Net
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% e 95.6%;
E 100 RS-Mamba E
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Fig. 13.  Comparison of model parameters and computational costs on
the LEVIR-CD dataset. The position of the bubbles is determined by the
parameters and GFLOPs, and the depth of the color is determined by accuracy.

LEVIR-CD dataset. In Table IV, we observe a clear distinction
in both the number of parameters (in millions) and the
GFLOPs (giga floating-point operations per second) across dif-
ferent models. Notably, models such as FC-EF, FC-EF-conc,
ISNet, and SNUNet are lightweight in terms of parameters and
computational complexity, with the FC-EF family exhibiting
the lowest parameter count and GFLOPs (1.35M parameters
and 14.31 GFLOPs for FC-EF). Conversely, models such as
ChangeFormer and ChangeMamba significantly increase both
parameters (up to 85.53M for ChangeMamba) and GFLOPs
(179.32 GFLOPs for ChangeMamba), likely due to their
more sophisticated architectures aimed at capturing complex
temporal and spatial changes.

Our model, highlighted with 57.84M parameters and
94.06 GFLOPs, strikes a balance between computational cost
and accuracy, offering competitive performance without the
prohibitive resource demands of the largest models. The bub-
ble chart (see Fig. 13) reinforces these findings, illustrating the
trade-offs between model complexity and efficiency, with our
model positioned closer to RS-Mamba and SARAS-Net, which
also achieve good accuracy at moderate computational costs.
Meanwhile, methods such as ChangeFormer and Change-
Mamba are computationally intensive but may justify their
resource requirements with superior accuracy, as indicated
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by their higher color gradient on the chart. This comparison
demonstrates that, while lightweight models are more effi-
cient, they might sacrifice accuracy, whereas larger models,
including ours, aim to optimize this trade-off, offering a viable
solution for large-scale remote sensing CD tasks.

VI. CONCLUSION

In this article, we propose a multilevel feature extraction
network based on VMamba for remote sensing image CD. The
core idea of MF-VMamba is to establish long-range depen-
dencies by fusing global and local information of branches
at each scale to achieve information interaction in space and
channel dimensions, thereby improving the accuracy of CD.
The advantages of MF-VMamba can be attributed to several
key factors.

Architectural  Innovation: By employing VMamba,
we effectively reduce computational complexity and memory
usage, which is essential for processing high-resolution remote
sensing images. The incorporation of LKC further allows for
efficient extraction of spatial and channel information, leading
to a decrease in model parameters without compromising
performance.

Feature Fusion Mechanism: The VMamba-based encoder
is specifically designed to extract multiscale global features,
while the decoder facilitates the fusion of these features for
enhanced detection of change objects in images. This dual
approach is critical for achieving high performance across
varied datasets.

Implications for Future Research: The improvements
observed in our model not only signify advancements within
CD methodologies but also serve as a foundation for future
explorations into the Mamba architecture. We encourage
researchers to build upon our findings, particularly in the areas
of multiscale feature fusion and the integration of attention
mechanisms, to address challenges associated with complex
remote sensing imagery.

Through extensive experiments conducted on four public
datasets, our model demonstrates superior performance com-
pared to state-of-the-art CD methods. These results affirm
the effectiveness of MF-VMamba in tackling the inherent
complexities of remote sensing data.
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