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A B S T R A C T   

Detailed land cover change trajectory offers a better opportunity for understanding the dynamic of land surface 
process. However, change information contained in training samples, which are usually difficult to obtain, needs 
to be provided in advance to achieve such goal within a complex scenario. A novel multiple change detection 
approach, namely Tri-temporal Logic-verified Change Vector Analysis (TLCVA) in posterior Probability Space 
(TLCVAPS), was proposed in this paper. It removes the dependence on change class information contained in 
training samples, while reducing the detection errors by taking change logic into account for the first time. The 
proposed approach consists of three steps, including: (1) change vector produced in posterior probability space, 
(2) binary change detection via TLCVA, and (3) change trajectory identification through combining change 
vector angle comparison and logic verification in change pattern. We applied the proposed approach on three tri- 
temporal datasets obtained in Nanjing, Xianning, and Zhenjiang, China, respectively. The results confirmed the 
superiority of TLCVAPS in comparison with state-of-the-art multiple change detection methods with the same 
prior knowledge.   

1. Introduction 

Land cover change, which offers valuable environmental informa-
tion, is one of the most important indicators in geoscience related 
knowledge (Feddema et al. 2005). In recent years, with the increasing 
disturbances of anthropogenic activities, land cover has changed 
significantly (Zalles et al. 2021). Therefore, tracking change information 
is of great significance to ecological environment protection and sus-
tainable development (Homer et al. 2015). Remote sensing enhances the 
traditional way of in-situ investigation, and provides effective means for 
obtaining repeated observations in wide geographic areas (Bruzzone 
and Bovolo 2013; Woodcock et al. 2020). An immense amount of multi- 
temporal data archives have been produced and utilized based on 
various satellites and sensor platforms. With the growth and accumu-
lation of available remote sensing images, urgent demands of utilizing 
these data for detecting land cover changes are accordingly increasing 
(Roy et al. 2014; Wulder et al. 2019). 

Change detection is a process to distinguish differences in images of 

the same scene acquired on different dates (Bovolo and Bruzzone 2007; 
Singh 1989). Up to the present, a great many of remote sensing-based 
change detection techniques have been successively proposed and 
applied in diverse fields, such as natural disaster interpretation, land 
degradation monitoring, and urbanization analysis (Wang et al. 2020a; 
Wang et al. 2022; Xian and Homer 2010). They can be broadly divided 
into unsupervised and supervised approaches. Unsupervised methods 
usually conduct a direct spectral comparison for different images. They 
do not require prior knowledge of a specific area, which is beneficial to 
capture the unexpected changes, such as flood, earthquake, landslide, 
etc. (Falco et al. 2013; Hostache et al. 2012; Wang et al. 2022). Never-
theless, unsupervised change detection outcomes are susceptible to 
external contributors, such as atmospheric condition changes, illumi-
nation differences, insufficient sensor calibration, etc., which usually 
occur between multi-temporal images at different acquisition dates 
(Chen et al. 2005; Solano-Correa et al. 2018). By contrast, the re-
quirements of the supervised methods in radiometric consistency are not 
as strict as those of unsupervised methods. The model trained by a 
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supervised classifier is highly adaptable, which greatly reduces the im-
pacts of the variance in image acquisition conditions (Tan et al. 2019). 
Furthermore, tracking change trajectory can also be realized through a 
supervised method with the help of training samples. According to the 
aforementioned advantages, supervised methods have been successfully 
applied in many change detection applications (Volpi et al. 2013; Wang 
et al. 2020b; Wu et al. 2017). 

The overwhelming majority of supervised change detection tasks are 
based on bi-temporal or time series images. For bi-temporal change 
detection, pre- and post-classification are the two widely adopted stra-
tegies (Peiman 2011). Post classification comparison (PCC) obtains 
result from two classified images acquired at different time (Coppin 
et al. 2004). As long as land cover properties of some pixels are obtained 
in advance, the change locations with their trajectories can be achieved 
accordingly. However, misclassification in any image will lead to a 
biased result because of error propagation (Burnicki et al. 2010). In 
contrast, pre-classification methods, which identify changes via classi-
fying stack or difference image, do not rely on land cover information of 
any temporal images (Volpi et al. 2013). This kind of approaches 
consider the feature variance between different images and require the 
samples contained change class information once. Nevertheless, the 
change information contained in training samples is difficult to obtain. 
For time series change detection, it is possible to extract change infor-
mation by PCC image-by-image or classifying the stacked images for a 
fixed time period. However, with the accumulative effect in time series 
images, the aforementioned defects in bi-temporal change detection are 
greatly magnified (Kempeneers et al. 2012). Model-based methods, 
which take the long-term change patterns of pixel values into account, 
open up a new path for time series change detection (Verbesselt et al. 
2010; Zhu 2017). As typical a representative, Continuous Change 
Detection and Classification construct a harmonic function based on 
land surface reflectance of each pixel in a given time series (Zhu and 
Woodcock 2014). They are capable of achieving not only land cover type 
but also change trajectory at any time. Deep learning-based methods are 
also effective time series change detection techniques, which enable to 
fully mine the high-level spectral, spatial, and temporal characteristics 
of time series data through a pre-trained model, realizing the purpose of 
precisely monitoring continuous land cover changes (Kong et al. 2018; 
van Duynhoven and Dragićević 2019). However, whether it is a har-
monic model or deep network model, they both require large amounts of 
dense data to fit complicated functions or train sophisticated models, 
consuming more time and labor in data acquisition and program 
computing even with the purpose of detecting changes over several 
instant times. 

Since bi-temporal and time series change detection cannot meet the 
requirements of high accuracy and efficiency simultaneously, the 
pattern of land surface change among several images is therefore 
discovered and extracted as auxiliary knowledge to make full use of 
temporal information. Circular change detection approach derived from 
2D phase unwrapping provides the ability to identify the errors between 
images pairs within the time sequence (Bertoluzza et al. 2017). Its ac-
curacy improves with the increase of images considered in an iteration. 
Consequently, a better performance comes with more computing power, 
running time, and obtained images. Tri-temporal Logic-verified Change 
Vector Analysis (TLCVA), which analyzes the logical relationship among 
three images acquired from different dates, was proposed by Du et al. 
(2020). It overcomes the shortcomings of bi-temporal change detection 
through additional time information, and avoids the onerous work of 
iterative test or time series model construction. However, without prior 
knowledge, TLCVA is powerless to identify detailed change category. 
According to the current research, two crucial issues should be further 
addressed:  

(1) How to reduce the dependence on change class information 
contained in training samples while avoiding error accumulation 
in multiple change detection problems?  

(2) How to take the advantage of temporal characteristic between 
several images to make up for the deficiency of change class 
identification with spectral features? 

Therefore, Tri-temporal Logic-verified Change Vector Analysis in 
posterior Probability Space (TLCVAPS) is proposed in this paper, which 
is developed upon the TLCVA. In this approach, the magnitude of change 
vector is utilized to identify the unchanged and changed regions, 
whereas the direction of change vector is adopted to track the change 
trajectories. Furthermore, a change pattern system is constructed by the 
change detection results of three bi-temporal image pairs, whose con-
sistency in change pattern are examined, to ensure their logical ratio-
nality in temporal space. Three case studies using tri-temporal SPOT 7, 
Sentinel-2, and Landsat 8 remote sensing datasets were carried out, 
confirming the effectiveness and superiority of TLCVAPS. 

2. Method 

The proposed change detection method mainly includes the 
following parts: (1) change vector produced in posterior probability 
space, (2) binary change detection based on TLCVA, and (3) change 
trajectory identification and logical verification. Fig. 1 displays the 
flowchart of the TLCVAPS. 

2.1. Change vector produced in posterior probability space 

CVA is a basic change detection method, which obtained changes by 
comparing pixel-based reflectance (Lambin and Strahlers 1994; ZhiYong 
et al. 2021). Based on this theory, CVAPS is developed by pixel-wise 
posterior probability comparison instead, reducing the impacts 
affected by radiometric variation between different images (Chen et al. 
2011). Posterior probability provides the ability to denote the reliability 
of identification result (Tao et al. 2005). It can be estimated by a func-
tion of image features in a supervised classifier: 

P = f (x) (1) 

where x = (x1, x2, ..., xm) represents image features of a pixel. m de-
notes the feature dimension. P = (p1, p2, ..., pn) represents the posterior 
probabilities of the pixel attached to land cover class 1 ton, in which n is 
the class number. Let class probabilities of a pixel in time 1 and 2 be P1 =

(p1
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T andP2 = (p2
1, p2

2, ..., p2
n)

T, the change vector in CVAPS can 
be described as follows: 

ΔP
̅→

= P2 − P1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p2
1 − p1

1

p2
2 − p1

2

... ...

p2
n − p1

n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2) 

where ΔP̅→ is change vector and can model change characteristics. 
The magnitude of the corresponding change vector can be represented 
by. 
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̅→

| =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(p2
1 − p1

1)
2
+ (p2

2 − p1
2)

2
+ ...+ (p2

n − p1
n)

2
√

(3) 

Then, a threshold for change magnitude can be determined to 
examine if a pixel has changed. Furthermore, change trajectory can be 
defined according to the direction of change vectorΔP̅→. We use P = (p1,

p2, ..., pn) to denote the posterior probabilities of a pure pixel belonging 
to classe: 

pei =

{
1, if i = e
0, if i ∕= e (4) 

wheree,i ∈ [1,n]. Assuming that a pure pixel changes from land cover 
type a tob, the base change vector is defined as follows: 
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ΔP̅→
ab = P2

b − P1
a (5) 

where P1
a = (p1
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T andP2
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T.The angle 
between ΔP̅→ and base change vector ΔP̅→

ab can be considered as a 

measure of their similarity. Thus, a group of base change vector 
{
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}

can be used to identify the trajectory of 
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withΔP̅→, the change trajectory of ΔP̅→ is identified as from land cover 
type k tol. ΔP̅→
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The geometric interpretation is displayed in Fig. 2, in which the axes 
represent the posterior probabilities of three land cover types. Three 
vertices A, B, and C on the axes denote pure pixels belong to three 
definite classes, and thus the borders of the black triangle denote three 
base change vectors. P1 and P2 denote pixel posterior probabilities of a 
pixel in time 1 and 2, and thus ΔP̅→ represents the corresponding change 
vector. Since the angle between ΔP̅→ and ΔP̅→

AB of the base change vectors 
is the smallest, the change trajectory of ΔP̅→ is defined as land cover type 
A to B. Note that when P1 and P2 are exactly the same, ΔP̅→ is con-
sequently 0→, which means that the reflection of these pixels are 
completely consistent and can be directly considered as no-change. 

2.2. Binary change detection based on TLCVA 

For the case of tri-temporal images, change detection can be con-
ducted by separating them into three pairs of bi-temporal images. A 
change path is then constructed in acquisition order. From the 
perspective of mathematics, each pixel has two possible outcomes 
(change or no-change) from an image pair, and one of 23 types of change 
patterns can be generated. However, in reality the sequence of land 
cover changes over a path must keep consistent, which means that three 
of 23 aforementioned patterns do not conform the realistic logic due to 
false and missed detection in bi-temporal change detection outcome. 
Fig. 3 displays the change patterns of tri-temporal change detection, in 
which Pattern 6 to 8 are illogical. 

Therefore, TLCVA approach is adopted to correct the mistakes in bi- 
temporal change detection, which mainly contains the three parts (Du 
et al. 2020). First, basic CVA, in which change vectors are generated in 
posterior probability space, is implemented and the incorrect patterns 
are identified through logic judgement. Then, automated sample deci-
sion (ASD), which is based on the judgement whether a bi-temporal 
result affects the reasonability of the correct change pattern, is utilized 
to obtain training samples. The reliable samples are selected based on 
the following rules: Given three bi-temporal results are within a correct 

Fig. 1. Flowchart of the TLCVAPS method.  

Fig. 2. Sketch map of posterior probability-based change vector.  
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change pattern, if changing a certain one results in unreasonable logic, it 
is considered as a reliable sample label. In contrast, it does not affect the 
reasonability of the logic, it can be seen as an unreliable sample and will 
not be used in the subsequent processing. The defined training samples 
are then used for updating the outcomes within the incorrect patterns. 
Finally, reliability comparison is carried out to address the remaining 
illogical patterns. It is worth noting that the change vector in the original 
TLCVA characterizes the image differences by spectral reflectance, 
whose direction is not suitable for identifying the type of land cover 
changes. Instead, the posterior probability of land cover, whose differ-
ence is more conducive to depicting the trajectory information for 
changes as is shown in Fig. 2, is adopted here. 

2.3. Change trajectory identification and logic verification 

After implementing TLCVA, change and no-change in a tri-temporal 
pattern can be defined. As change vectors between each image pair are 
achieved, the trajectories of changed pixels can be calculated by 
comparing the angles between the change vectors and the base change 
vectors. According to the theory of unsupervised TLCVA presented in 
2.2, there are three cases for the five logical tri-temporal change pat-
terns: a change pattern contains zero, two or three changes. For a pixel 
position, if there are p change vectors between an image pair, pq possible 
change trajectory combinations can be acquired (q is the number of 
changes contained in a tri-temporal change pattern). 

We assume that each bi-temporal image pair contains three possible 
change types: 1) For the case with three changes in a pattern (Fig. 3 - 
Pattern 5), 33 possible change trajectories can be concluded theoreti-
cally. How to locate the exact one is the key issue. Similar to the criterion 
of finding the minimum angle between the change vector and the base 
change vector in bi-temporal change detection, the way of identifying 
the correct tri-temporal change trajectory is to find the one with the 
minimum sum of three bi-temporal change vector angles. Therefore, the 
sum of the angles for each change trajectory at a pixel location is 
therefore calculated in advance, constructing a three-dimensional sum 
change vector angle cube (SCVAC). By locating the position of the 
minimum element in SCVAC, the change trajectory of the pixel in tri- 
temporal images can be finally achieved. 

S = min
∑u

h=1
θh (7) 

where θh represents the minimum angle between the change vector 

and base change vectors of the hth pair of bi-temporal images. u is the 
number of changes in a change pattern. S indicates the minimum sum of 
bi-temporal change vector angles in the change pattern. 2) For the case 
with two changes in a pattern (Fig. 3 - Pattern 2 to 4), the unchanged 
border is directly output as no-change, and the other two changed 
borders can produce 32 possible change trajectories. The sum angles at a 
pixel location are then calculated, constructing a two-dimensional sum 
change vector angle plane (SCVAP). Similarly, by searching the element 
with a minimum value, change trajectories of the pixel location among 
tri-temporal images can be consequently achieved. 3) For the case with 
no change in a pattern (Fig. 3 - Pattern 1), they are directly output as no- 
changes. Fig. 4 illustrates the steps of achieving the change trajectories 
of a pixel in the case of three changes in a change pattern. 

As a tri-temporal change trajectory is obtained by locating the min-
imum element, their logic in tri-temporal change path requires quality 
control. The beginning and the end of the change path from T12 to T23 
must be consistent with T13. (Note that the change vector of an un-
changed pixel is defined as 0→.) If they are inconsistent, the corre-
sponding element will be abandoned from SCVAC or SCVAP. The 
minimum value will be then reselected from the remaining elements 
until the consistency condition of the two paths are satisfied. Accord-
ingly, the corresponding change trajectory of tri-temporal images is 
determined. 

To better express its entire implementation, the detailed steps of the 
proposed change detection approach are summarized in the following 
pseudocode.  

TLCVAPS Algorithm 

Input: land cover map D of a single temporal image 
Step 1: Unsupervised TLCVA is conducted in advance to determine the pixel positions 

belong to change pattern 1 
Step 2: Training samples randomly chosen at these positions from land cover map D 
Step 3: A general classifier model for tri-temporal images is trained via the single 
temporal training samples,  
and a posterior probability is produced for each pixel in tri-temporal images 
Step 4: Differences of posterior probability are used as change vectors to identify the 
change areas via TLCVA 
Step 5: SCVAC or SCVAP is constructed at each pixel location by summing the angles 
between change vectors and  
base change vectors of three bi-temporal image pairs 

For Go through each pixel location 
Step 6: Search the index with minimum value in SCVAC or SCVAP  

While The consistency of two change path in a change pattern is not satisfied 
Step 7: Eliminate the minimum value in SCVAC or SCVAP of the pixel 

(continued on next page) 

Fig. 3. Change patterns of tri-temporal change detection. Note that Urs and Crs denote unchanged and changed pixels between a bi-temporal image pair Tr and Ts, 
respectively. 
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(continued ) 

TLCVAPS Algorithm 

Step 8: Continue searching the index with minimum value in SCVAC or SCVAP 
End while 
Step 8: Identify change trajectory between each bi-temporal image pair at the pixel 
location 

End For 
Output: Final multiple change trajectory results Y through tri-temporal images  

3. Results and analysis 

3.1. Dataset description 

A. Dataset I: Nanjing (Simulated SPOT 7 images). 
This dataset was simulated on a tri-temporal SPOT 7 image with four 

multispectral bands acquired over an area of Nanjing, China. The orig-
inal image was obtained on March 27, 2017. A subset of the image was 
selected as the first temporal image T1 with a size of 171 × 332 pixels. It 
contains four land cover types including vegetation, bare land, imper-
vious surface area (ISA) and water. To construct a multiple change 

Fig. 4. Illustration of identifying change trajectories by TLCVAPS in the case of three changes in a tri-temporal change pattern.  

Fig. 5. SPOT 7 Nanjing dataset. (a)-(c) are the tri-temporal images. (d)-(f) are the land cover maps of T1 to T3. (g)-(i) are the reference maps of CD12, CD23, and CD13, 
respectively. 
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detection problem, some pixels in image T1 assigned to different land 
cover classes were moved to a different location with all bands, simu-
lating a new image as T2. Taking image T2 as the benchmark, image T3 
was constructed in the same way. In addition, small different values 
were added into the pixels of T2 and T3 (DN = +10 and − 50 for T2 and 
T3, respectively) to simulate constant bias in atmospheric or illumina-
tion conditions. We also appended white gaussian noise into T2 and T3 
with different signal-to-noise ratio (SNR) values (20 and 30 dB for T2 
and T3, respectively) to enhance the complexity of the task. These steps 
help to generate a tri-temporal simulated remote sensing dataset with 
images T1, T2, and T3. False color composites of the dataset are displayed 
in Fig. 5 (a)-(c). Land cover types of pre- and post-change in tri-temporal 
images are also displayed in Fig. 5 (d)-(f) for T1 to T3, respectively. 
Accordingly, the corresponding change reference maps are achieved and 
presented in Fig. 5 (g)-(i) through the calculation of pixel movement, 
which contains a category of unchanged pixels and 12 categories of 
changed pixels in CD12 (change detection between T1 and T2), CD23 
(change detection between T2 and T3) and CD13 (change detection be-
tween T1 and T3). Table.1 lists the detailed land cover changes and the 
corresponding pixel amounts in the reference maps. 

B. Dataset II: Xianning (Real Sentinel-2 images). 
This dataset consists of tri-temporal Sentinel-2 images acquired on 

2016–12-09, 2017–12-09, and 2017–12-24 in Xianning, China, which 
were obtained from Copernicus Data Hub. The reflectance image of 
Level L1C were transformed to Level L2A. Ten bands, including Band 
2–8, 8A, 11–12, were selected and resampled to 10 m for each image of 
the dataset. Image-to-image radiometric correction and co-registration 
(residual error within 0.5 pixel) were conducted to reduce discrep-
ancies and accurately match the pixels in the same location. Subsets of 
the images with a size of 273 × 251 pixels were defined as T1, T2, and T3, 
which contain four land cover types including vegetation, bare land, 
sand and water. In this scenario, the land cover changed significantly 
during these periods, such as the vegetation change by cultivation, the 
coastal change under the tidal forces, et.al. The tri-temporal images with 
false color composite are shown in Fig. 6 (a)-(c). With prior knowledge 
and Google Earth historical images, careful manual image interpretation 
for land cover type and change was conducted. The reference land cover 
maps of T1 to T3 are shown in Fig. 6 (d)-(f), and the corresponding 
reference change maps are displayed in Fig. 6 (g)-(i), in which one class 
of no-change and four classes of change are included. The detailed pixel 
amounts of land cover changes in the reference maps are listed in 
Table 2. 

C. Dataset III: Zhenjiang (Regional Landsat 8 images). 
The land covers and their transitions will be complex in a large area, 

leading to more types of land cover changes naturally formed. There-
fore, to prove the effectiveness of the proposed approach, we applied it 
on a wide-area application. The third dataset covers a region of Zhen-
jiang, China, with an area of more than 174 km2. The dataset consists of 
tri-temporal Landsat 8 OLI images with 7 bands (Band 2–7 and 10) with 
a resolution of 30 m. Pre-processing including relative radiometric 

correction and image co-registration (residual error within 0.5 pixel) 
were implemented to ensure the consistencies of reflection and location 
among multi-temporal images. Three images were acquired on 
2017–05-18, 2019–05-24, and 2021–03-26, during which this area un-
derwent a rapid urbanization and the farming status of agricultural land 
were also significantly different. The images in false color composite are 
displayed in Fig. 7 (a)-(c). For the reference maps, we adopted the 
following strategies to achieve. We first manually labeled four land 
cover samples, and utilized multiple machine learning-based (Support 
Vector Machine, Random Forest, Rotation Forest, Extreme Learning 
Machine) and deep learning-based (Convolutional Neural Network) 
models to perform training and classification for each image. The pixels 
with the same classification results of all the classifiers are retained, and 
the remaining are visually interpreted by cooperating with the 
Geographic National Condition Census (GNCC) and higher resolution 
images (multi-temporal Sentinel-2 data and Google Earth historical 
images). The reference land cover maps (Fig. 7 (d)-(f)) and their corre-
sponding change transition maps (Fig. 7 (g)-(i)) were finally obtained at 
30 m resolution level. It is worth noting that our interpretation of each 
image represents the land cover at the corresponding moment. For 
example, under the impact of crop phenology, the land cover of a pixel, 
where the rice is farmed in the period of water storage, ear, and har-
vesting, will be recognized as water, vegetation, and bare land, respec-
tively. Meanwhile, the types of land cover changes can be greatly 
enriched under this circumstance. Table.3 lists the detailed land cover 
changes and the corresponding pixel amounts in the reference maps. 

3.2. Experimental setting 

To confirm the superiority of TLCVAPS, three multiple change 
detection methods were carried out. The first one was PCC, which 
identified change trajectory though the classification results obtained at 
different dates (Serra et al. 2003). In PCC experiments, training samples 
were randomly chosen from the land cover of temporal 1 to train a 
classifier model, which was then employed to tri-temporal image T1 to 
T3 to obtain the respective land cover classification results. Conse-
quently, land cover change can be achieved through the comparison of 
classification results at different dates. The second one was derived from 
Chen et al. (2012) (ULCM hereafter). We modified its framework to be 
suitable for tri-temporal method, which contained three crucial steps: 1) 
Training samples were randomly selected from the land cover of T1 to 
train the classifier model and applied it to T1 to T3, achieving the clas-
sification results C1, C2, and C3 and the posterior probability vectors of 
T12 and T13. 2) Changed and unchanged areas in T2 and T3 were then 
detected by conducting CVAPS on T12 and T13. 3) The land cover types of 
changed pixels in T2 and T3 were updated from classification results C2 
and C3, whereas the unchanged pixels inherited the land cover from C1. 
The last comparative method was derived from Saha et al. (2019) (DCVA 
hereafter). We made appropriate adjustments to the method to enable 
comparative analysis under the same experimental conditions: 1) Deep 
features were extracted and selected by Convolutional Neural Network 
with the architecture we proposed in Fang et al. (2022), which is proved 
to be more effective for change detection with training samples pro-
vided, instead of the pre-trained network, through the training samples 
randomly chosen from the land cover of T1. 2) Deep feature-based 
classifications were conducted to obtain the land cover C1, C2, and C3, 
while deep feature-based CVA were carried out to achieve the changed 
and unchanged region in CD12 and CD13. 3) The land cover types of 
changed pixels in T2 and T3 were updated by C2 and C3, whereas the land 
cover types of unchanged pixels were inherited from C1. 

In terms of parameter settings, SVM was selected to generate the 
classification results and their posterior probability in the aforemen-
tioned methods (except for DCVA) owing to its robustness in dealing 
with ill-posed issues. Although deep learning-based techniques are 
proved to be effective, their complicated network structures usually 
leading to lower efficiencies. Besides, their performances are not as good 

Table 1 
Pixel amounts of reference land cover change maps in the Nanjing dataset.  

Category CD12 CD23 CD13 

No-change 53,695 54,769 52,072 
Vegetation to Bare land 450 / 450 
Vegetation to ISA 585 323 585 
Vegetation to Water / 240 240 
Bare land to Vegetation / 280 280 
Bare land to ISA 986 / 986 
Bare land to Water 288 / 288 
ISA to Vegetation / 525 525 
ISA to Bare land / 96 153 
ISA to Water 240 / 183 
Water to Vegetation 528 / 205 
Water to Bare land / 329 272 
Water to ISA / 210 533  
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as expected when dealing with insufficient training samples. In contrast, 
SVM provides the advantages of parameter insensitivity and strong 
generalization, which are beneficial to address the problems with a 
small sample size or a non-linear model (Maulik and Chakraborty 2017). 
The Gaussian kernel was adopted for SVM, whose parameters were 
chosen through Particle Swarm Optimization, an adaptive optimization 
method for searching the optimum parameters (Del Valle et al. 2008). 

The sizes of image patches used for model training in the SPOT 7, 
Sentinel-2, and Landsat 8 datasets were set as 7 × 7, 5 × 5, and 3 × 3 
pixels in DCVA method, respectively. The Otsu algorithm, which is an 
effective non-parametric method for image segmentation, was adopted 
for threshold decision of change magnitude in ULCM, DCVA, and 
TLCVAPS (Otsu 1979). The outcomes of these approaches were obtained 
through the mean of 10 Monte Carlo runs to avoid the random errors in 
the experiments. 

3.3. Change detection 

A. SPOT 7 Nanjing Dataset. 
In the experiment of Nanjing dataset, we assumed that the one with 

prior knowledge is image T1. 40 labels in each land cover type of T1 were 
randomly chosen as training samples to train SVM, which was applied to 
produce the posterior probability and change vector in TLCVAPS. Under 
the same parameter condition, PCC, ULCM, and DCVA were also carried 

Fig. 6. Sentinel-2 Xianning dataset. (a)-(c) are the tri-temporal images in chronological order. (d)-(f) are the land cover maps of T1 to T3. (g)-(i) are the reference 
maps of CD12, CD23, and CD13, respectively. 

Table 2 
Pixel amounts of reference land cover change maps in Xianning dataset.  

Transition category CD12 CD23 CD13 

No-change 50,355 55,322 44,518 
Vegetation to Bare land 10,666 10,398 17,381 
Bare land to Vegetation 6854 1465 4638 
Sand to Water 594 / 594 
Water to Sand 54 1338 1392  
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out. Comprehensive evaluations were conducted in terms of change 
detection maps and accuracy indices. Table.4 lists the assessment of the 
methods for Nanjing dataset, where the best indices were emphasized in 
bold. It can be concluded that the results of TLCVAPS outperformed the 
other three methods. From the aspect of overall accuracy, TLCVAPS 
achieved the best overall accuracies with 99.82%, 99.31% and 99.17% 
in CD12, CD23 and CD13, respectively. Their corresponding Kappa co-
efficients were also the highest among all the methods, proving its 
effectiveness and reliability. From the perspective of binary (change/no- 
change) result, TLCVAPS achieved the lowest commission and omission 

errors and the highest F1 scores in most bi-temporal image pairs. More 
specifically, PCC was on par with TLCVAPS in the aspect of independent 
accuracy of change class, but its accuracies of unchanged class were far 
behind, resulting in a comprehensive performance inferior to TLCVAPS. 
ULCM was not as eye-catching as the other methods in terms of inde-
pendent accuracy, but its overall accuracy and reliability were better 
than PCC in CD12 and CD13. Especially in CD12, its performance was 
close to that of TLCVAPS. The accuracies of DCVA for no-change were 
close to those of TLCVAPS, but the accuracies of independent change 
class were worse, resulting in inferior overall performances to TLCVAPS 

Fig. 7. Landsat 8 Zhenjiang dataset. (a)-(c) are the tri-temporal images in chronological order. (d)-(f) are the land cover maps of T1 to T3. (g)-(i) are the reference 
maps of CD12, CD23, and CD13, respectively. 
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but better than PCC and ULCM. 
Fig. 8 displays the change detection maps produced by different 

methods applied to Nanjing dataset. The following results can be 
noticed. PCC detected changes by comparing their classification results, 
and many obvious continuous false detections at the edge of the ground 
object occurred in the change detection maps, leading to much lower no- 
change accuracies and higher commission errors. More than that, the 
constant bias and white Gaussian noise had a significant impact on the 
classification results, giving a great influence on the results. However, 
this kind of errors can be eliminated by analyzing the change vectors. 
Judging from the maps produced by ULCM, the identification of 
changed area in CD12 was accurate, whereas more missed detections 
occurred in CD13 and CD23, indicating that the land cover posterior 
probability of image T3 was not as accurate as that of image T2 through 
the classifier model trained by T1. The change trajectory detected based 
on CVAPS may be affected by different image acquisition conditions, 
resulting in missed or false detection. Compared to PCC and ULCM, 
DCVA and TLCVAPS both avoided most missed and false detections 
caused by classification confusion and additional noise. TLCVAPS was 
better at detecting the edges of changed objects than DCVA through the 
analysis of change vector magnitude and direction with logic verifica-
tion in temporal space. 

B. Sentinel-2 Xianning Dataset. 
Similarly, to access the quantitative evaluation of the change 

detection approaches, a detailed assessment was conducted for the 

Xianning dataset. We also assumed that the one with prior knowledge is 
image T1. Then, 35 labeled samples in each class were chosen at random 
as training samples to train the SVM model for generating posterior 
probability and change vector in TLCVAPS. PCC, ULCM, and DCVA were 
carried out with the same parameters. Table.5 lists the accuracy 
assessment of the aforementioned methods, where the best results were 
highlighted in bold. Regardless of the change detection accuracy of any 
bi-temporal image pairs, TLCVAPS consistently obtained the best per-
formance compared to the other methods. In detail, TLCVAPS achieved 
the highest overall accuracies of 90.78%, 90.25%, and 87.64% with 
Kappa coefficients of 0.7864, 0.7181, and 0.7532 in CD12, CD23, and 
CD13, respectively. Meanwhile, TLCVAPS obtained the lowest commis-
sion and omission errors (except for CD12) and the highest F1 scores 
(except for CD13) in terms of binary change detection indices. For the 
accuracy of individual change class, TLCVAPS was capable of achieving 
the highest accuracies in most cases. 

The change detection maps created with different methods for 
Xianning dataset are displayed in Fig. 9. The yellow dashed circles 
exemplify the improvements of TLCVAPS compared to the other 
methods. PCC obtained more commission errors, owing to the combined 
effect of misclassification and error propagation. For instance, obvious 
false detections of the change class ‘water to vegetation’ occurred along 
the southeast riparian zone in CD12 and CD13, because the mixtures of 
water and vegetation were provided with similar surface reflectance 
values for the water class. Thus, the water body was mistakenly classi-
fied as vegetation in the second and third temporal images, resulting in 
these false detections. Similar errors also occurred in the center of CD23 
and the central south of CD13. In addition to false detection, missed 
detections existed as well, such as in the southwest area of CD13. For the 
results of ULCM, errors were significantly less than PCC, since it avoided 
the process of error accumulation by analying the posterior probability- 
based change vectors, improving the performance to a certain extent. In 
contrast, DCVA greatly reduced salt-and-pepper noise due to the 
consideration of scene-based deep features. However, false and missed 
detections of an entire object sometimes occurred (e.g., false detection of 
water to vegetation in the west of CD23 and CD13). The change detection 
maps of TLCVAPS indicated significant improvements compared to the 
other methods. It not only utilized temporal information to address the 
problem of false and missed detections, but also adopted the direction of 
the change vector instead of the classification comparison to avoid 
change class confusion caused by error propagation. 

Table 3 
Pixel amounts of reference land cover change maps in the Zhenjiang dataset.  

Category CD12 CD23 CD13 

No-change 162,455 163,461 156,337 
Vegetation to Bare land 9155 6435 8732 
Vegetation to ISA 3141 3486 5579 
Vegetation to Water 949 852 1246 
Bare land to Vegetation 6519 10,416 9971 
Bare land to ISA 3730 2129 3375 
Bare land to Water 450 291 352 
ISA to Vegetation 2846 2020 4153 
ISA to Bare land 2224 2351 1881 
ISA to Water 855 597 816 
Water to Vegetation 710 618 544 
Water to Bare land 252 319 286 
Water to ISA 214 525 228  

Table 4 
Change detection results achieved by different methods in the Nanjing dataset.  

Index CD12 CD23 CD13 

PCC ULCM DCVA TLCVAPS PCC ULCM DCVA TLCVAPS PCC ULCM DCVA TLCVAPS 

NC (%) 86.23 99.80 99.60 99.91 89.19 87.52 99.35 99.86  76.90  86.90  99.40  99.78 
V-B (%) 99.78 98.44 82.22 99.56 / / / /  98.67  96.89  78.00  98.89 
V-I (%) 100.00 90.94 97.78 100.00 100.00 99.69 100.00 99.69  100.00  96.41  96.75  100.00 
V-W (%) / / / / 100.00 98.75 66.25 100.00  100.00  98.75  66.25  100.00 
B-V (%) / / / / 45.36 72.14 97.86 47.14  68.57  72.14  97.86  47.14 
B-I (%) 97.87 95.84 2.84 97.97 / / / /  98.48  98.28  0.51  98.07 
B-W (%) 99.65 98.96 66.67 100.00 / / / /  100.00  98.96  60.07  100.00 
I-V (%) / / / / 100.00 96.76 75.24 100.00  100.00  96.76  75.24  100.00 
I-B (%) / / / / 100.00 100.00 81.25 100.00  99.35  98.04  88.24  96.08 
I-W (%) 99.58 73.33 49.58 87.08 / / / /  96.72  81.97  22.95  89.07 
W-V (%) 100.00 100.00 99.05 100.00 / / / /  100.00  100.00  81.95  100.00 
W-B (%) / / / / 58.97 42.86 14.29 51.98  50.74  37.50  5.88  44.49 
W-I (%) / / / / 93.33 97.62 90.48 96.19  99.06  98.87  98.12  98.31 
OA (%) 86.93 99.51 97.38 99.82 89.04 87.45 98.43 99.31  78.36  87.35  96.12  99.17 
Kappa 0.4225 0.9529 0.7024 0.9829 0.3529 0.3206 0.7683 0.9023  0.3805  0.5227  0.7143  0.9475 
p <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  <0.01  <0.01  <0.01  <0.01 
CE (%) 13.77 0.20 0.40 0.09 10.81 12.48 0.65 0.14  23.10  13.10  0.60  0.22 
OE (%) 0.05 0.29 2.26 0.09 0.03 0.05 0.80 0.01  0.06  0.21  3.18  0.09 
F1 0.4524 0.9801 0.9343 0.9915 0.4020 0.3670 0.8952 0.9815  0.4372  0.5742  0.9363  0.9873 

Note that the abbreviations in the table are as follows. NC: No-change. V-B: vegetation to bare land. V-I: vegetation to ISA. V-W: vegetation to water. B-V: bare land to 
vegetation. B-I: bare land to ISA. B-W: bare land to water. I-V: ISA to vegetation. I-B: ISA to bare land. I-W: ISA to water. W-V: water to vegetation. W-B: water to bare 
land. W-I: water to ISA. OA: overall accuracy. p: p value for significant test. CE: commission error. OE: omission error. F1: F1 score. 
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C. Landsat 8 Zhenjiang Dataset. 
We also implemented a quantitative evaluation for this regional case. 

In the experiment, T1 was assigned as the one with prior knowledge, and 

35 labeled samples of each class for this image were randomly selected 
as the training samples for model learning in all the methods. Table 6 
lists their performances in multiple aspects. Similarly, it can be observed 

Fig. 8. Tri-temporal change detection results of the Nanjing dataset. (a)-(c), (d)-(f), (g)-(i), (j)-(l), and (m)-(o) are the reference maps, PCC, ULCM, DCVA, and 
TLCVAPS results for CD12, CD23, and CD13, respectively. 

Table 5 
Change detection results achieved by different methods in the Xianning dataset.  

Index CD12 CD23 CD13 

PCC ULCM DCVA TLCVAPS PCC ULCM DCVA TLCVAPS PCC ULCM DCVA TLCVAPS 

NC (%)  89.61  93.39  96.28  93.39 89.29 90.07 92.89 92.75  89.67  92.21  96.47  92.39 
V-B (%)  90.62  89.65  74.34  90.51 81.55 79.41 65.77 85.31  93.03  91.42  73.41  90.94 
B-V (%)  79.06  70.09  56.38  76.16 57.54 46.08 59.11 49.62  28.44  24.49  74.28  37.45 
S-W (%)  37.04  35.19  46.13  49.66 / / / /  36.36  34.34  23.40  49.66 
W-S (%)  64.81  53.70  38.89  22.22 50.52 62.93 53.44 69.43  70.19  69.32  59.12  78.09 
OA (%)  88.24  89.94  88.39  90.78 86.68 86.98 87.28 90.25  85.52  86.46  87.73  87.64 
Kappa  0.7399  0.7639  0.7027  0.7864 0.6253 0.6265 0.6076 0.7181  0.7124  0.7236  0.7456  0.7532 
p  <0.01  <0.01  <0.01  <0.01 <0.01 <0.01 <0.01 <0.01  <0.01  <0.01  <0.01  <0.01 
CE (%)  10.39  6.61  3.72  6.61 10.71 9.93 7.11 7.25  10.33  7.79  3.53  7.61 
OE (%)  5.52  6.81  11.14  5.82 5.38 5.89 7.94 3.68  10.69  11.76  12.64  9.53 
F1  0.8350  0.8700  0.8771  0.8772 0.7614 0.7670 0.7889 0.8351  0.8479  0.8619  0.8957  0.8781  
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that the TLCVAPS outperformed the other listed methods in terms of 
overall accuracy and Kappa coefficients for CD12, CD23, and CD13. In 
more detail, it also achieved highest accuracy for each independent 
change class. From the perspective of binary change detection perfor-
mance, TLCVAPS obtained the lowest omission errors in all conditions 
and the highest or the second highest F1 scores in most cases. DCVA did 
well in detecting unchanged region with the best performances in no- 
change class accuracy and commission error in each case. In contrast, 
PCC and ULCM underperformed the DCVA and TLCVAPS by any mea-
sure. The change trajectory maps of the listed methods for the Zhenjiang 
dataset are displayed in Fig. 10. 

4. Discussion 

4.1. Training sample analysis 

The supervised change detection is susceptible to the amount of 
training samples. Sufficient training samples enables to make the model 
trained more adaptable, whereas excessive training samples increase the 
cost of manual labeling and reduce the efficiency of model training. 
Therefore, it is of great significance to select the appropriate amount of 
training samples according to different research areas. To investigate its 
specific impact on the results of TLCVAPS, increasing amounts of 
training samples chosen from the land cover map corresponding to a 

Fig. 9. Tri-temporal change detection results of the Xianning dataset. The first to the last row are the CD12, CD23, and CD13 results for Reference, PCC, ULCM, DCVA, 
and TLCVA, respectively. 

Table 6 
Change detection results achieved by different methods in the Zhenjiang dataset.  

Index CD12 CD23 CD13 

PCC ULCM DCVA TLCVAPS PCC ULCM DCVA TLCVAPS PCC ULCM DCVA TLCVAPS 

NC (%)  88.12  92.07  96.48  90.35  87.17  88.88  92.81  89.35  86.26  90.53  94.58  88.00 
V-B (%)  89.00  80.39  40.99  94.10  86.87  76.60  33.57  95.32  86.44  73.61  36.89  94.19 
V-I (%)  86.02  86.72  48.20  92.84  81.01  80.03  23.52  88.93  83.22  83.33  38.45  90.86 
V-W (%)  77.34  63.33  45.63  84.72  81.34  60.09  30.75  92.61  82.34  64.93  43.02  94.86 
B-V (%)  86.30  80.00  37.61  95.11  85.01  73.99  40.00  86.28  86.48  77.92  51.67  91.42 
B-I (%)  83.24  76.92  51.74  87.72  80.23  73.60  42.79  86.57  77.99  73.10  49.81  80.27 
B-W (%)  81.11  60.44  66.22  91.33  83.51  52.23  50.86  96.56  76.99  55.11  50.85  93.18 
I-V (%)  81.41  79.66  11.42  89.63  72.08  72.43  17.82  84.36  82.88  81.19  22.97  90.54 
I-B (%)  83.18  68.39  26.84  85.88  75.97  51.60  19.06  80.94  81.55  61.83  13.34  81.92 
I-W (%)  87.72  71.11  14.74  90.99  82.75  67.67  23.95  96.31  91.42  74.88  13.24  96.45 
W-V (%)  79.58  62.96  31.55  93.80  74.11  52.27  43.85  84.63  74.82  49.45  34.01  87.50 
W-B (%)  70.63  32.94  35.32  93.25  73.35  23.20  18.81  95.30  73.08  19.23  22.03  95.80 
W-I (%)  80.37  64.49  24.30  92.52  86.10  66.67  8.76  93.33  85.09  63.16  7.89  87.72 
OA (%)  87.69  89.76  87.10  90.61  86.45  86.19  83.47  89.25  85.86  87.53  83.91  88.50 
Kappa  0.6570  0.6854  0.4734  0.7320  0.6183  0.5894  0.3676  0.6908  0.6569  0.6697  0.4653  0.7192 
p  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  <0.001 
CE (%)  11.88  7.93  3.52  9.65  12.83  11.12  7.19  10.65  13.74  9.47  5.42  12.00 
OE (%)  2.16  3.02  9.59  1.08  2.60  3.60  9.88  1.32  2.78  3.94  11.10  1.26 
F1  0.7369  0.7938  0.7992  0.7863  0.7077  0.7205  0.6697  0.7595  0.7481  0.7958  0.7759  0.7866  
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single temporal image were tested. Fig. 11 shows the overall accuracies 
in these circumstances. They reveal a noticeable increase when the 
numbers in each class are<25 (Nanjing dataset), 20 (Xianning dataset), 
and 30 (Zhenjiang dataset), whereas they tend to stabilize afterwards. 
Thus, the results demonstrate that an appropriate quantity of training 
samples are capable of obtaining the outcomes with satisfactory 
accuracy. 

4.2. Binary change analysis 

In addition to using the direction of change vector instead of post 
classification comparison to make an improvement, TLCVAPS is novel at 
using land surface change patterns to further examine the self- 
consistency of tri-temporal change trajectory. To prove the importance 
of temporal information, the binary change detection results of the 
datasets with (TLCVAPS) and without (CVA, CVAPS) logic verification 

were generated by controlling variables. Their overall accuracies are 
presented in Fig. 12. It can be noticed from the figure that the accuracies 
of TLCVAPS are higher than those of CVAPS and CVA for each image 
pair regardless of the datasets, indicating the vital contribution of 
temporal logic. From another perspective, in comparison to CVA and 
TLCVA, TLCVAPS employs posterior probability difference instead of 
radiometric difference to detect changes, avoiding the strict requirement 
of radiometric correction. Therefore, TLCVAPS provides the ability of 
monitoring land cover change with large areas and long time. Fig. 12 
also demonstrates this advantage by comparing TLCVAPS with CVA and 
TLCVA. Besides, the change magnitudes of different transition cate-
gories in posterior probability space are normalized in the same scale of 
0 to 1. Hence, it is more appropriate to use a single threshold, which is 
easier to be optimized, for TLCVAPS than TLCVA and CVA. 

Fig. 10. Tri-temporal change detection results of the Zhenjiang dataset. The first to the last row are the CD12, CD23, and CD13 results for Reference, PCC, ULCM, 
DCVA, and TLCVA, respectively. 

Fig. 11. Overall accuracies of the (a) Nanjing dataset, (b) Xianning dataset, and (c) Zhenjiang dataset through TLCVAPS with different quantities of training samples.  
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4.3. Time consumption analysis 

To assess the efficiency of the TLCVAPS, computational time of the 
adopted methods in all the datasets were recorded and listed in Table 7. 
The experiments were conducted using MATLAB R2021a on Intel (R) 
Core (TM) i9-11900 K PC machine with 3.50 GHz of CPU and 64 GB of 
RAM. With additional combination of loop computation of minimum 
sum of change vector angle and logical verification for each change 
pattern, the time consumption of TLCVAPS is more than three times that 
of PCC and ULCM. However, it took less time than DCVA, in which the 
structure of deep neural network is complicated, and parameter opti-
mization and model training are time-consuming. From a comprehen-
sive perspective, it is worthwhile and feasible to sacrifice a little 
efficiency for more accurate and reliable change detection results. 

5. Conclusion 

A novel multiple change detection approach, TLCVAPS, is proposed 
in this paper. Its main contributions are concluded as following: First, 
TLCVAPS improves the performance of multiple change detection by 
using land cover information of single temporal image, which gets rid of 
the dependence on change class information contained in training 
samples, significantly reducing the difficulty and cost of sample acqui-
sition compared to state-of-the-art supervised multiple change detection 
methods. Again, TLCVAPS adopts the angle between the change vectors 
as the basis to recognize the land cover transition, successfully avoiding 
the error accumulation by comparing classification results at different 
dates. Lastly, TLCVAPS is the first attempt to introduce temporal logic 
into multiple change detection task with several instant images pro-
vided, which is a pilot research for the utilization of time information. 
Experiments of three tri-temporal remote sensing datasets were carried 
out, and their results confirmed the superiority of TLCVAPS in terms of 
accuracy and reliability. Given its effectiveness and accuracy, the pro-
posed multiple change detection approach enables to help policy makers 
and practitioners better understand the process of land surface devel-
opment, and has great potential be applied in urban land use planning, 
environmental governance, natural hazard assessment, etc. 

Although both TLCVAPS and TLCVA are the change detection 
methods based on tri-temporal remote sensing images, they have 
obvious differences, including the following aspects. (1) Target differ-
ence: TLCVA is a binary change detection method, in which the results 
are change and no-change. While TLCVAPS is designed for multiple 
change detection, whose results not only indicate whether a pixel has 
changed or not, but also include the transition trajectory between 
different land cover classes for the changed pixels. (2) Method differ-
ences: TLCVA adopts the magnitude of change vector to characterize 
intensity of land cover change at different dates and identify whether a 
pixel change or not. Then, it utilizes the logical relationship in tri- 
temporal image change patterns to correct errors. In contrast, 
TLCVAPS not only adopts the magnitude of change vector to recognize 

whether a pixel change or not, but also uses the direction of change 
vector to analyze the trajectory of the changed pixel. In logic 
verification-based post-processing, compared to reclassification and 
posterior probability comparison for false and missed detection in 
TLCVA, the strategy of constantly screening the minimum sum of change 
vector angles until a logical self-consistency in each change pattern is 
implemented in TLCVAPS. Combining the above two aspects, TLCVAPS 
is a further extension and deepening of TLCVA in terms of target and 
method. 

For the case of increasing or decreasing land cover types in a tri- 
temporal dataset, a possible solution is to label samples for the image 
with the most land cover types to train a general multi-class classifier, 
which is suitable for all images within the dataset. Consequently, the 
steps of the proposed approach can be executed as above and the cor-
responding results can be successfully achieved. Besides, since CVA- 
based methods recognize changes through the comparison of the 
instant status of land surface at different moments, seasonal changes in 
TLCVAPS will influence the land cover identification and its posterior 
probability value for an object, which will consequently affect the 
change vector between different times, leading to differences on change 
detection results. Hence, similar to other CVA-based methods, it is better 
to keep the phenological periods of multi-temporal images consistent 
when applying TLCVAPS approach. 
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Table 7 
Time consumptions of different multiple change detection algorithms.  
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