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Coseismic landslides triggered by the 2022 
Luding Ms6.8 earthquake, China

Abstract On September 5, 2022, an Ms6.8 earthquake struck Lud-
ing County, Sichuan Province, China. Through creating a coseismic 
landslide prediction model, we obtained the spatial distribution of 
the triggered geological hazards immediately after the earthquake. 
Through collecting all available multi-source optical remote sensing 
images of the earthquake-affected area via UAV and satellite plat-
forms, the exact information of coseismic landslide was achieved 
by pattern recognition and visual inspection. According to the cur-
rent results, the Luding earthquake triggered 5336 landslides with 
a total area of 28.53km2. The spatial distribution of the coseismic 
landslides is correlated statistically to various seismic, terrain, and 
geological factors, to evaluate their susceptibility at regional scale 
and to identify the most typical characteristics of these failures. 
The results reveal that the coseismic landslides mainly occurred on 
the sides of the Xianshuihe fault (within 1.2 km) and Dadu River 
(within 0.5 km) in striped patterns. They are concentrated in the 
regions with an elevation range of 1000–1800 m, a slope range of 
25–55°, and lithologies of acid plutonic rocks, mixed sedimentary 
rocks, and siliciclastic sedimentary rocks. Besides, the coseismic 
landslides of the Luding earthquake are smaller in size and shal-
lower than those triggered by the 2008 Wenchuan earthquake and 
the 2017 Jiuzhaigou earthquake. Rapidly achieving the spatial loca-
tions and distribution patterns of the coseismic landslides enables 
to provide effective support and guidance to emergency rescue, risk 
mitigation, and reconstruction planning.

Keywords Coseismic landslides · Luding earthquake · Prediction · 
Remote sensing · Interpretation · Spatial distribution

Introduction
On September 5, 2022, an Ms6.8 earthquake with the epicenter of 
29.59°N, 102.08°E, and a focal depth of 16 km jolted Luding County, 
Sichuan Province, China. The seismic shaking lasted for 20 s, and 
2715 aftershocks were subsequently recorded. The earthquake was 
acutely felt in many western provinces, including the metropolis 
of Chengdu, Chongqing, and Xi’an, about 226 km, 444 km, and 
830 km away from the epicenter, respectively. According to the 
shaking intensity map (the Ministry of Emergency Management 
releases intensity map of Luding magnitude 6.8 earthquake in 
Sichuan Province — Ministry of Emergency Management, PRC, in 
Chinese) announced by the Ministry of Emergency Management 
of China, which is based on a modified Mercalli (MM) scale (GB/T 
17,742–2020, 2020), the area with seismic intensity larger than VI 
degree is 19,089  km2, and the maximum intensity reaches IX degree 
with an area of 280  km2 (An et al. 2022). The earthquake triggered a 
large number of coseismic landslides, damaged houses, and blocked 

roads in the affected area, resulting in severe casualties and prop-
erty losses. According to statistics, it has caused 93 fatalities and 25 
people missing until September 12, 2022.

Such strong earthquake usually triggers extensive geological 
hazards, including landslides, debris flows, and rock avalanches, 
and has a long-term modification on the landscape and environ-
ment in mountainous regions (Fan et al. 2019; Kincey et al. 2021; 
Tang et al. 2011). These geological hazards, together with postseis-
mic rainfalls, concur to pose severe threats to the local commu-
nity (Budimir et al. 2014; Yin et al. 2009). Thus, rapid and accurate 
identification of the location of coseismic geohazards is critical 
for risk mitigation and future reconstruction in the earthquake-
affected region (Williams et al. 2018; Xu et al. 2012). Furthermore, 
documentation of the detailed inventories for coseismic geohaz-
ard events is significant for future studies on the evolution of the 
landscape in this region (Fan et al. 2021; Galli et al. 2008; Guzzetti 
et al. 2012). Earth observations from remote sensing images, which 
are provided with large area coverage but short revisit times, offer 
a great opportunity of monitoring land surface process in wide 
geographical areas compared to time and labor costly in situ 
investigation (Lee 2005; Roy et al. 2014). On this basis, coseismic 
landslide mapping based on remote sensing technology has been 
developed rapidly and has become the most important means of 
achieving their distributions and patterns (Mantovani et al. 1996; 
Van Westen et al. 2008). At present, the machine learning-based 
classifier became the popular way of large-scale automatic landslide 
detection. However, landslides usually occur in mountainous areas 
with complicated terrains, leading to certain mapping differences 
through various classifiers with sophisticated pixel value distribu-
tion in remote sensing images (Reichenbach et al. 2018). Hence, an 
effective classifier for a research area may not be satisfactory to 
another study case (Wang et al. 2022; Woźniak et al. 2014).

Detailed coseismic landslide maps are usually produced by 
on-site investigation or interpreting the optical remote sensing 
images obtained from satellites, unmanned aerial vehicles (UAVs), 
or helicopters (Galli et al. 2008; Guzzetti et al. 2012; Hovius et al. 
1997; Rossi et al. 2018). However, effective satellite images are often 
limited by weather conditions. In addition, field conditions are also 
difficult to meet the standard of on-site investigation and UAV/
helicopter mission. Therefore, coseismic landslide prediction is of 
great significance for the guidance and decision-making of emer-
gency rescue during the period without post-earthquake images 
and investigations. The current methods for coseismic landslide 
prediction based on statistical analysis, such as logistic regression, 
linear regression, and support vector machine, are widely used 
in many researches (Guzzetti et al. 2006), which provide relative 
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estimate of landslide spatial occurrence based on various condi-
tioning factors (Brenning 2005; Budimir et al. 2015; Lee et al. 2008; 
Tanyas et al. 2019). However, the current methods generally have the 
following limitations: (1) these data-driven models do not contain 
rich enough samples of historical earthquake-induced landslides. 
(2) The controlling factors of the landslides are unclear, leading to 
insufficient consideration of learning features. (3) The linear or 
nonlinear intelligent algorithm based on machine learning cannot 
fully explore the comprehensive correlation between the triggered 
landslides and the controlling factors.

In view of the mentioned problems existing in the mapping 
and prediction, and the urgent need of rapid and accurate inven-
tory for emergency rescue after a sudden hazard, a comprehensive 
framework of evaluating the triggered landslides after a strong 
earthquake is proposed in this paper, in which the 2022 Luding 
earthquake is adopted as a typical case. First, a novel coseismic 
landslide prediction model is carried out based on global landslide 
samples and deep learning algorithms to immediately achieve the 
landslide distribution. Then, landslide mapping based on the strat-
egy of ensemble learning will be performed once post-earthquake 
remote sensing images are acquired. Last but not least, with the 
integration of coseismic landslide prediction and interpretation, 
this work is aimed at providing a detailed landslide inventory and 
at delivering a quick statistical evaluation of the spatial distribu-
tion and controlling factors of the geological hazards induced by 
the 2022 Luding earthquake, with the twofold scope of providing a 
first-hand information for the risk assessment related to possible 

secondary geohazards and of supporting the guidance for post-
earthquake reconstruction and planning.

Study area
The 2022 Luding earthquake is located in the Hengduan Mountains, 
the southeastern margin of the Qinghai–Tibet Plateau, which is a 
typical alpine canyon landform. The Dadu River runs through the 
area from north to south with a huge river drop. The dominant lith-
ologies of the interior layers in this region are the acid plutonic rocks 
and mixed sedimentary rocks. Due to the long-term effect of strong 
tectonic action and weathering, the rock and soil mass is quite bro-
ken, providing favorable conditions for the occurrence of geological 
hazards. The earthquake occurred near the Moxi fault in the south-
eastern segment of Xianshuihe Fault with a direction of NW–SE.

As the strike-slip boundary between the Bayan Har block and 
the Sichuan–Yunnan block, the Xianshuihe Fault is one of the 
most active faults in China, forming the famous Y-shaped fault 
zone with the Longmenshan Fault and the Anninghe Fault (Fig. 1). 
The Xianshuihe Fault is a left-lateral strike-slip fault about 350 km 
long, starting from Donggu town (Ganzi county) in the north and 
extending to Tianwan town (Shimian county) in the south via 
Luhuo, Daofu, Qianning, and Kangding counties. The Xianshuihe 
Fault consists of five major branching faults, and their long-term 
slip rates are remarkably different among the north and south 
segments. Specifically, the slip rate in the north of the Qianning 
segment is 14~20 mm/a, whereas it is 9.6~13.4 mm/a for the Moxi 
segment (Bai et al. 2018, 2021; Chen et al. 2016). As a result, different 

Fig. 1  The epicenter and major faults related to the 2022 Luding Ms6.8 earthquake
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behaviors on intensity and frequency of seismic activities are 
observed in different segments of the Xianshuihe Fault. The Lud-
ing earthquake is most probably induced by the seismic activity of 
Moxi segment in the Xianshuihe Fault.

The Xianshuihe Fault has experienced several strong seismic 
activities in history, including nine Ms ≥ 7.0 earthquakes since 1700. 
The most famous earthquake is the 1786 Kangding-Moxi Ms7.75 
earthquake, which is also spatially closest to the Luding earthquake 
epicenter. The most recent seismic activity in this area is the 1973 
Luhuo Ms7.6 earthquake. It is worth mentioning that the Coulomb 
stress near Xianshuihe Fault increased significantly after the 2008 
Wenchuan Ms8.0 earthquake and the 2013 Lushan Ms7.0 earth-
quake occurred on the Longmenshan Fault. The strike-slip rate 
has been increasing from northwest to southeast, indicating a pos-
sibility of inducing this large earthquake in the Xianshuihe Fault.

Coseismic landslide prediction
Rapid estimation of spatial distributions and controlling factors 
of coseismic landslides are essential for emergency rescue after an 
earthquake. Based on the global dataset, a near-real-time predic-
tion model of earthquake-triggered landslide was established via 
the machine learning algorithm (Fan et al. 2022). It is worth not-
ing that the dataset contains 90,655 coseismic landslide samples 
of the recent seismic events that occurred in the Alpine canyon 
zone of the Tibetan Plateau periphery, including the 2021 Luxian 
Ms5.9 earthquake, the 2022 Menyuan Ms7.1 earthquake, and the 2013 
Lushan Ms6.1 earthquake. Ten controlling factors were selected and 
adopted as the input features through information gain (Fan et al. 
2021). In terms of topography and landform, four characteristics 
including elevation, slope, aspect, and curvature were considered. 
The lithology and fault distance were extracted as important geo-
logical structure controlling factors of landslide development. Land 
cover type and distance from rivers were also considered as key 
influencing factors for the geological environment. Meanwhile, the 
peak ground motion acceleration (PGA) and peak ground motion 
velocity (PGV) were selected as the trigger factors of coseismic 
landslide (Fan et al. 2022). The characteristics used are listed in 
Table 1. The coordinate system of these data was standardized and 

unified as the WGS 1984 geographic coordinate system for global 
model construction. Deep forest (DF) is a new tree-based deep 
learning method, which is different from deep neural network 
based on the neurons structure. By integrating and connecting the 
forests which composed of trees, it enables to achieve the purpose 
of making the classifier do the representational learning, greatly 
improving the classification result (Lyu et al. 2017). Through com-
parisons of cross-validation for the current popular algorithms 
including random forest, extreme gradient boosting, multilayer 
perceptron, and convolutional neural network, DF was adopted to 
construct the prediction model thanks to its better performance. 
It has already been successfully applied in coseismic landslide pre-
diction in the southeastern margin of the Qinghai–Tibetan Plateau 
(Fan et al. 2022; Zhou and Feng 2019). The detailed parameters for 
the prediction model are available (Fang 2023).

We applied the model immediately after the Luding earthquake, 
and achieved the corresponding triggered landslides (Fig. 2). Note 
that for the subsequent research of Luding earthquake-triggered 
landslides, all the data were uniformly converted into a projected 
coordinate system of WGS 1984 UTM Zone 48N to facilitate spatial 
matching and statistical analysis. The coseismic landslide area with 
very high probability is 20.71  km2, accounting for 0.16% of the total 
considered area. The areas with high and medium probabilities 
are 142.39  km2 and 401.29  km2, respectively, accounting for 1.1% 
and 3.1% of the total considered area. The areas with low and very 
low probabilities are 1809.75  km2 and 10,570.96  km2, respectively, 
accounting for 13.98% and 81.66% of the total considered area. To 
quantitatively analyze the accuracy of the prediction, the visual 
interpretation of coseismic landslides based on remote sensing 
images were used for evaluation. The results are in good agree-
ment with the actual landslide locations. Their overall accuracy and 
the Kappa coefficient, which is an index for measuring inter-rater 
reliability for categorical results, are 77.24% and 0.54, respectively. 
The area under the ROC curve (AUC), which is also an important 
evaluation metric for checking the performance of a prediction 
model, reaches 0.84 (Fig. 3). These indicators confirm the effective-
ness and reliability of the prediction for the Luding earthquake-
triggered landslides.

Table 1  General description of 
conditioning factors adopted in 
this paper

Class Factors Data source Resolution/
scale

Topography Elevation Elevation taken directly from NASA SRTMS 
DEMS

30 m

Slope Slope angle derived from NASA SRTMS DEMS

Aspect Aspect derived from NASA SRTMS DEMS

Curvature Curvature derived from NASA SRTMS DEMS

Lithology Lithology Global Lithology Map 1:200,000

Distance to fault

Seismicity PGA USGS ShakeMap System 1000 m

PGV

Climate Land use GlobeLand30 30 m

Distance to river
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Coseismic landslide interpretation
To figure out the actual spatial distribution of coseismic landslides, 
we rapidly collected remote sensing images through different data 
sources after the earthquake, which mainly include UAV- and satel-
lite-based images. Due to the following cloudy and rainy weather, it 
was difficult for optical image acquisition via satellite platforms to 
cover the entire earthquake-affected area in a short time, making it 
difficult to realize landslide recognition based on change detection 
approach through images before and after the earthquake. With 
continuous efforts and multiple data sources, we finally achieved 
a high-resolution composite image with less cloud cover through 
multi-temporal images. Compared to change detection, classifica-
tion-based algorithm enables to realize more rapid, automatic, and 
accurate landslide identification under such data conditions. Subse-
quently, experienced experts in geological interpretation eliminated 
the identified pre-earthquake landslides (false detection) accord-
ing to the comparison between pre- and post-earthquake images 
through visual inspection, obtaining the final results. The informa-
tion of available images is displayed in Fig. 4.

Fig. 2  Prediction of spatial distribution probability of the a Luding earthquake-triggered landslides and examples of interpreted landslides at 
b Wandong Village and c Wajiao Town

Fig. 3  ROC of the prediction results
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UAV‑based image interpretation

Due to the cloudy weather, satellite-based optical images were dif-
ficult to be utilized after the earthquake. We took the lead in carry-
ing out UAV missions and successively acquired five remote sens-
ing images (with spatial resolutions of 0.15–0.2 m) of the severely 
affected areas. To ensure data standardization and model generali-
zation, their spatial resolutions and data types were normalized to 
0.2 m and uint8, respectively. Finally, the sliding window was used 
to crop the remote sensing image into the patches with the size of 
512 × 512 pixel for further model input.

To serve emergency relief, we first adopted SegFormer, which 
is a semantic segmentation model based on Transformer, to 

automatically detect coseismic landslides as soon as possible 
(Dosovitskiy et al. 2020). It has already performed well in the 2017 
Jiuzhaigou earthquake-triggered landslide detection (Tang et al. 
2022). SegFormer consists of an encoder and a decoder (Xie et al. 
2021). The encoder is used to extract landslide features from UAV 
images automatically, and the input of the encoder is small image 
patches with a size of 512 × 512 × 3. The encoder consists of four 
transformer blocks with different sizes. Transformer captures 
global dependencies among the image elements, which significantly 
improves the reception field of SegFormer. A CNN-based position 
embedding block is used to learn geo-position information of the 
image elements. The output of SegFormer is a feature map with a 
size of 16 × 16 × 2048. The decoder is used to decide whether each 

Fig. 4  Remote sensing image 
coverage in the Luding  
earthquake-affected area
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image element belongs to the range of landslides, and the input 
of the decoder is four hierarchical feature maps. To improve the 
semantics of low-resolution feature maps and the details of high-
resolution feature maps, SegFormer fuses the hierarchical feature 
maps. Specifically, the upsampling operation is employed to expand 
low-resolution feature maps to 128 × 128. The concatenate operation 
is employed to merge all the feature map into a unified feature map 
with a size of 128 × 128 × 768. Finally, a fully connected layer, a con-
volution layer, and an upsampling layer are used to predict the class 
label of each image element. The architecture of the SegFormer-
based approach is displayed in Fig. 5. The detailed parameters for 
the model are available (Liu et al. 2021).

To evaluate its recognition performances, we manually inter-
preted the earthquake-triggered landslides in Caoke and Moxi 
towns. The former was adopted as training samples, whereas the 
latter was used as test samples. Thus, the training and test dataset 
are collected from two different areas without any overlap. The 
UAV images are divided into small patches. The dividing method 
is a sliding window without an intersection. Thus, there are 4125 
training samples and 1350 test samples. The train/test ratio is about 
3:1. Supervised semantic segmentation requires accurate landslide 
labels. We manually annotate all the landslides in the image patches. 
The hyperparameter configurations are shown as follows. The ver-
sion of SegFormer is B4. AdamW is adopted as the optimization 
algorithm (Loshchilov and Hutter 2017). The initial learning rate 
and weight decay factor are set as 0.00006 and 0.01. The batch size 
and the numbers of iteration are set as 4 and 8000, respectively. We 
use mean interaction over union (mIoU), F1 value, precision, and 
recall to make the assessments, which are listed in Table 2. It can 
be seen that the average IoU and F1 value reach 0.844 and 0.864. 
For coseismic landslides, the IoU and F1 values of the coseismic 

landslide are 0.71 and 0.83, respectively. At the same time, all the 
evaluation metrics of the background are greater than or equal to 
0.977. Therefore, the SegFormer-based approach enables to achieve 
good performances for both coseismic landslides and background 
classes in this event. The coseismic landslide detection results via 
the SegFormer-based approach are shown in Fig. 6.

Satellite‑based image interpretation

On September 10, 5 days after the earthquake, we obtained satellite-
based image of the influenced area from the cloud gap through 
Gaofen-6. Co-registration is implemented to ensure that image pix-
els or objects of panchromatic and multispectral (including blue, 
green, red, and near-infrared bands) images in the same location 
are comparable. To ensure high accuracy of matching, the images 
are co-registered to a root-mean-square error of less than 0.5 pix-
els. Gram–Schmidt pan-sharpening is then adopted to improve the 
spatial resolution of Gaofen-6 imagery, achieving a 2-m resolution 
fusion image. Affected by the weather after the earthquake, the land 
cover information was blocked by clouds in most parts. Fortunately, 

Fig. 5  The architecture of SegFormer

Table 2  Accuracy assessment of coseismic detection in Moxi town 
via SegFormer-based approach

Class IoU Precision Recall F1 
value

Landslide 0.710 0.865 0.798 0.830

Background 0.977 0.986 0.991 0.988

Average 0.844 0.925 0.894 0.864
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the hardest hit area by geological hazards happened to be displayed 
through an empty window, where the situation of the land surface 
can be investigated. We obtained a range covering around  312km2, 
which mainly contains five types of targets, including landslide, 
vegetation, water, impervious surface area (ISA), and cloud/cloud 
shadow. We adopted the methods of feature extraction and model 
construction as Wang et al. (2022), whose effectiveness has been 
proved in multiple recent case studies of earthquake-triggered 
landslide recognition. Thus, we constructed multi-scale extended 
morphological profiles (EMPs) after principal component analysis 
(PCA) transformation of the fused Gaofen-6 images (Benediktsson 
et al. 2005; Dalla Mura et al. 2011). According to the experiences, the 
scale parameter of EMPs was defined as [2,3]. The classification-
based interpretation model integrated K-nearest neighbor (KNN), 
support vector machine (Mountrakis et al. 2011), random forest 
(Belgiu and Drăguţ 2016), and rotation forest (Rodriguez et al. 
2006), whose parameters were set the same as Wang et al. (2022).

Before acquiring satellite remote sensing images, we obtained 
some coseismic landslide information by means of intelligent iden-
tification and visual interpretation through aerial UAV images of 
several small areas within the range. These landslide data were resa-
mpled to the same spatial resolution as Gaofen-6 with a total num-
ber of 231,618 pixels, of which 2% are selected as training samples, 
and the remaining 98% are used as test samples for performance 
evaluation. At the same time, the other four categories of targets 
in the image were visually interpreted. The same number of pixels 
were selected for each category to integrate with the landslide train-
ing samples to construct a training set, whereas the remainder were 

integrated with the landslide test samples to construct a testing 
set. Table 3 lists the confusion matrix of the classification result. 
The overall accuracy reached 94.37%, and the Kappa coefficient 
was 0.9145, which indicate that the targets contained in the image 
could be effectively recognized. In particular, for the coseismic 
landslides, the producer accuracy reaches 83.46%, and the user 
accuracy reaches 78.38%. The results show that this approach real-
ized high accuracy for the identification of coseismic landslides, 
and its reliability is further validated in the rapid and intelligent 
identification of large-scale geological hazards after a strong earth-
quake. Figure 7 displays the Gaofen-6 image and the corresponding 
classification result.

Comprehensive results of the coseismic landslides

To obtain comprehensive coseismic landslides, we continued to 
pay attention to multi-source satellite-based images after the 
earthquake. Finally, through the PlanetScope images on Septem-
ber 29 and October 1–3, a synthesized optical image covering 
almost the entire earthquake-affected area was achieved. We resa-
mpled the land cover results from UAV and Gaofen-6 images to 
3-m resolution, which is consistent with the PlanetScope data. 
For each class, 2000 pixels are selected as training samples to 
extract multi-scale EMPs (the training samples of cloud class 
were directly selected from PlanetScope images) to train the 
ensemble learning-based model. The entire image was then clas-
sified, and the landslides were selected from the classification 

Fig. 6  Coseismic landslide detection in Moxi town via SegFormer-based approach
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result. Finally, the final interpretation of the Luding earthquake-
triggered landslides were obtained by visual inspection of the 
landslide type classified.

Figure 8 shows the composite image and the corresponding 
identification results of coseismic landslides. The image covers 
 1258km2 of the earthquake-affected region, and the total area of 
coseismic landslide detected reaches 28.53km2 (including 5336 

landslides), accounting for 3.27% of the available image pixels. 
The slopes near the Xianshuihe Fault and Dadu River (including 
its tributaries) are the regions where geological hazards are con-
centrated. The number and density of earthquake-triggered land-
slides in the Wandonghe basin, east of Detuo town, is the highest 
all over the region. Large-scale continuous landslides occurred 
on both sides of the Xianshuihe Fault within Detuo and Tianwan 

Table 3.  Confusion matrix based on the results of Gaofen-6 image

Table.3 Confusion matrix based on the results of Gaofen-6 image

Class Landslide Vegetation Water ISA Cloud Producer accuracy/%

Landslide 10026 5 6 1853 123 83.46

Vegetation 16 51260 106 52 204 99.27

Water 653 1 11197 67 0 93.95

ISA 1955 36 20 8981 115 80.86

Cloud 141 57 1 179 12271 97.01

User accuracy/% 78.38 99.81 98.83 80.68 96.52 94.37

Fig. 7  a Gaofen-6 remote sensing image and b the corresponding land cover classification
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towns, and the average area of a single landslide is the largest in 
the earthquake-affected zone. The slope bodies on both sides of 
the Tianwan River in Caoke town are another concentration area of 
coseismic landslides triggered. In addition, many landslides, whose 
areas are small, also occurred along both sides of the Dadu River in 
Wajiao town. According to the on-site investigation, the geological 
hazards caused by the earthquake caused serious damages to the 
urban infrastructure and traffic arteries. Under the influence of 
rainfall and construction after the earthquake, the main roads in 
the towns have experienced landslides destroyed and emergency 
repairs several times.

Spatial distribution of the coseismic landslides
The epicenter of the Luding earthquake is located at the confluence 
of three major faults. The effects of strong tectonic movement and 
deep river valley unloading resulted in great the development of 
rock mass joints and fractures in this area. Therefore, under the 
action of strong ground movement, it is easy to trigger collapse 
and landslide hazards, which are mainly concentrated in the IX 
and VIII degree intensity area along the Xianshuihe Fault (Fig. 9). 
A large number of small-sized landslides are concentrated in Moxi 
platform, the Wandonghe basin, Wajiao town, and the banks of the 
Dadu river, around the Moxi platform. These landslides are shallow 
and have little impact on the Dadu river. The Wandong village is 
located in the center of the IX intensity area, where the coseismic 
landslide scale is the largest and densely developed at the mouth 
of the ditch. However, the coseismic landslides are numerous on a 
small scale in Wajiao town. The extensive coseismic landslides led 
to a large area of buried road and damaged roadbeds in moun-
tainous areas, seriously affecting the emergency rescue. Moreover, 
many houses were directly destroyed, especially in Mogangling and 
Wandong villages, leading to serious casualties.

Seismic, topography, and geologic factors are generally consid-
ered the main factors that contribute to the spatial distribution of 
coseismic landslides (Fan et al. 2018; Keefer 1984, 2000; Nowicki 

Jessee et al. 2018). To identify the most relevant factors controlling 
the coseismic landslides of this event, ten factors, including dis-
tance to seismogenic fault, distance to closest fault, distance to the 
epicenter, PGA, elevation, slope, aspect, distance to river, distance 
to road, and lithology, were taken into account. The distribution of 
landslides area and areal density for each factor were both statisti-
cally analyzed.

Seismic factors

According to the seismogenic mechanism, more intense shaking 
is likely to happen close to the seismogenic fault and is easier 
to trigger coseismic landslides. The seismogenic fault of this 
earthquake is the Moxi section of the Xianshuihe Fault, which 
is a sinistral strike-slip fault with NW–SE direction. Most of the 
coseismic landslides (62%) were observed within 5 km away from 
the seismogenic fault, and the landslide area shows a decreas-
ing trend with the increasing distance to the seismogenic fault 
(Fig. 10a). The landslide distribution on both sides of the seismo-
genic fault is slightly different. In detail, 54.4% of the coseismic 
landslides occurred on the southwest side of the seismogenic 
fault, while 45.6% occurred on the northeast side. The correla-
tion between landslide occurrence and the distance to the clos-
est geologic faults was also investigated (Fig. 10b). The results 
show that 54.8% of the total landslides are distributed less than 
2 km away from the closest fault. In particular, 39.6% are within 
a distance of 1 km.

The epicenter does not have an obvious impact on the coseismic 
landslide distribution as observed in other earthquake events (Bao 
et al. 2019; Valagussa et al. 2019; Wang et al. 2019), which is probably 
due to incomplete observations so far. In detail, nearly 96% of the 
coseismic landslides distributed within the radius of 9–27 km away 
from the epicenter, whereas less than 1% of the landslides occurred 
within 3 km (Fig. 10c). Figure 10d displays the relationship between 
PGA and the coseismic landslide distribution. The results show that 

Fig. 8  PlanetScope remote sensing image before (a) and after (b) the Luding earthquake, and the corresponding interpretation of earth-
quake-triggered landslides (c)
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PGA = 0.3 g is the minimum threshold of the coseismic landslides 
in the 2022 Luding earthquake. The landslide area and areal density 
both reach the peak when PGA is in the range of 0.5–0.6 g, fol-
lowed by 0.7–0.8 g. Higher PGA does not completely match larger 
landslide area or areal density, indicating that the landslides were 
triggered by a compound effect of multiple factors.

Terrain factors

To elucidate the influence of terrain factors on earthquake-induced 
landslides, the elevation, slope, and aspect were extracted via geo-
graphic information system (GIS) analysis by using digital eleva-
tion model from NASA with a spatial resolution of 30 m (Crippen 

Fig. 9  The aerial photos of  
the coseismic landslides in the  
area: a landslides in Wan-
dong village; b landslides on 
Moxi platform; c Mogangling 
landslide; d landslides over 
the Dagangshan hydropower 
station

Fig. 10  Relationship between coseismic landslide distribution and seismic factors: a distance to seismogenic fault, b distance to closest fault, 
c distance to epicenter, and d PGA
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et al. 2016). They were then resampled to 3-m resolution to match 
the landslide interpretation results for subsequent analysis.

As a result, the elevation of the earthquake-affected area ranges 
from 800 to 5000 m. The landslide area increases with the growth 
of elevation until 1600 m and then decreases until 3000 m con-
versely (Fig. 11a). After that, the landslide areas were maintained 
at low levels. The elevation of 1000–2400 m contains 22.2  km2 of 
landslides, occupying 78.3% of the total landslide area. This result 
indicates that the coseismic landslides tend to occur in the valley 
at low elevations. As is shown in Fig. 11d, the closer to rivers, the 
greater the coseismic landslide area is. The landslide area within 
500 m away from rivers accounts for 64.7% of the total. With slope 
angle growth, the landslide area first increases and then decreases 
(Fig. 11b). The angles between 25 to 55° aggregate 23.2  km2 land-
slides, accounting for 81.7% of the total landslide area. In terms of 
the slope aspect, it reveals that the coseismic landslides are mainly 
developed on the aspects of E and SE, accounting for 44.8% of the 
total coseismic landslide area, followed by NE and S (26.6% in total) 
(Fig. 11c). It seems that there is no obvious relationship between the 

aspect of the coseismic landslides and the strike of the seismogenic 
fault in this event.

Figure 11e presents a negative correlation between the coseis-
mic landslide distribution and the distance to roads, which might 
indicate the promotion of facilities construction to coseismic 
landslides. However, these roads in mountainous areas are usually 
built along rivers, which make it difficult to distinguish their inde-
pendent impacts of rivers and roads on the coseismic landslides 
triggered.

Lithological factors

To reveal the distribution of earthquake-induced landslides in dif-
ferent lithologies in detail, the lithology data were acquired from 
global lithological map (Hartmann and Moosdorf 2012) and con-
verted from vector to raster data format with a spatial resolution 
of 3 m, which is consistent to the interpretation achievements and 
beneficial to subsequent statistical analysis. It is worth noting that 
a target pixel may contain vectors with multiple attributes in data 

Fig. 11  Relationship between coseismic landslides distribution and topographic factors: elevation (a), slope (b), aspect (c), distance to river 
network (d), and distance to road (e)
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conversion. We adopted the attribute with the major occupation as 
the final result of the pixel.

The results reveal that acidic plutonic rocks and mixed sedimen-
tary rocks are the dominant lithologies, covering 52.2% and 25.4% 
of the total earthquake-affected area, respectively (Fig. 12). The 
coseismic landslides are also most widely distributed in these two 
lithologies, with areas of 15.7  km2 and 6.4  km2, together accounting 
for 77.5% of the total landslide area. The remaining components, 
which are sorted by coverage, are siliciclastic sedimentary rocks 
(9.3%), basic volcanic rocks (5.1%), metamorphic rocks (4.8%), 
carbonate sedimentary rocks (1.9%), basic plutonic rocks (0.7%), 
and pyroclastics (0.6%). Among them, the siliciclastic sedimen-
tary rocks have the largest landslide area (3.1km2), followed by 
basic plutonic rocks (1.2km2) and carbonate sedimentary rocks 
(1.1km2). Although coseismic landslides are mainly distributed in 
acid plutonic rocks and mixed sedimentary rocks, the landslide 
areal density of any of these two lithologies is not the highest due to 
their wide distribution in the study area. On the contrary, the basic 
plutonic rocks exhibit the highest landslide areal density (13.3%). 
However, it only contributes 0.7% of the study area. Similarly, car-
bonate sedimentary rocks are the lithology with the second largest 
landslide areal density (4.9%).

Discussion

Location of the Luding earthquake‑triggered landslides
Landslide-generating events counter and influence uplift by mobi-
lizing and redistributing mass and are known to shape different 
portions of the landscapes unevenly. For a strong earthquake event, 
a ridgetop is often considered an area with high coseismic land-
slide density. Due to the effect of micro-landforms, specific parts 
of the hillslope will be firstly destroyed by external forces such as 
earthquakes (Fan et al. 2018; Meunier et al. 2008). The area, num-
ber density, and relative location of all the landslides triggered by 
the Luding earthquake along the slopes were plotted on the vir-
tual slope profile (Fig. 13a). We evaluated 1.0  km2 as the contribut-
ing area threshold of fluvial channels and extracted the relative 

landslide locations by measuring the distance of both the highest 
and lowest point of individual landslide areas to the nearest ridge-
top and channel separately. Therefore, a marker close to the origin 
of the axes indicates a landslide that covers a large proportion of 
the slope. Conversely, a marker close to the surface indicates a small 
proportion of slope coverage. Figure 13a shows that a few landslides 
in the Luding earthquake are triggered in the ridgetop, whereas a 
large number of small-sized landslides (with an area up to 1000  m2) 
are concentrated in the lower section of the slope (with a distance 
to the valley less than 0.5) and quite close to the foot of slope (with 
a distance to the stream less than 0.2). Meanwhile, the amount of 
failures to the whole or most of the slope is small (the regions that 
are inwards close to the coordinate axis appear low-density blue). 
This particular distribution pattern, we suspect, is related to the 
strength of the ground motion. Seismic shake is not strong enough 
to trigger landslides close to the ridge. To validate this hypothesis, 
we made the virtual slope profiles based on the graded distribution 
of PGA (Fig. 13b–d). Combined with the analysis of the landslide 
area in various PGA distribution (Fig. 10d), it can be concluded that 
the weak ground motion (PGA < 0.6 g) mainly triggered extensive 
small sizes at the foot of the slope (with a distance to the stream 
less than 0.2) (Fig. 15c, d). Conversely, strong ground motion not 
only resulted in a concentration of slope foot but also induced the 
landslides in a higher slope body (with a distance to the stream 
higher than 0.5) (Fig. 15b). On the other hand, the higher density 
of landslides in the foot portion of the slopes might be due to the 
interaction between river incision, lateral sediment supply (unsta-
ble fluvioglacial deposits near Moxi platform) (Fig. 9b), and inter-
ference of anthropogenic road rehabilitation.

Comparison of landslide area and quantity

By statistical analysis of the global earthquake dataset, linear rela-
tionship is usually displayed between the total area and amount of 
coseismic landslides and earthquake magnitude (Fig. 14a) (Fan et al. 
2019). However, the 2022 Luding earthquake-triggered landslides 
indicate a larger total area compared to the 2013 Lushan earthquake 
(20.1km2) and the 2017 Jiuzhaigou earthquake (10.5km2). In terms 
of quantity, the landslide amount of the 2022 Luding earthquake is 
also greater than that of the 2017 Jiuzhaigou earthquake (1883) and 
the 2022 Lushan earthquake (1228) (Fig. 14b) (Fan et al. 2018; Zhao 
et al. 2022). These results suggest the characteristic of large scale 
and quantity of coseismic landslide triggered by the 2022 Luding 
earthquake.

The seismogenic fault of the 2008 Wenchuan earthquake is a 
thrust fault with obvious surface rupture, whereas the seismogenic 
fault of 2017 Jiuzhaigou earthquake and the 2022 Luding earth-
quake are both slip-strike faults. It is important to take different 
fault activity mechanisms into account when analyzing the spa-
tial distribution of coseismic landslides. Through statistics of the 
three earthquake-triggered landslides, the curve of the 2022 Luding 
earthquake is similar to others: with the increase of the landslide 
area, the landslide frequency increases first and then decreases 
(Fig. 15). In more detail, the distributions of medium and large 
landslide areas follow an inverse power law, whereas smaller land-
slides diverge and form a rollover, in which the frequency peaks of 
different events correspond to different area scales (Fan et al. 2019). 

Fig. 12  Distribution of coseismic landslides in different lithologies. VB: 
basic volcanic rocks; SS: siliciclastic sedimentary rocks; SM: mixed sedi-
mentary rocks; SC: carbonate sedimentary rocks; PY: pyroclastics; PB: 
basic plutonic rocks; PA: acid plutonic rocks; MT: metamorphic rocks
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It can be concluded that the area of a single landslide triggered by 
the 2022 Luding earthquake concentrates between 20 and  400m2, 
whereas they mainly are distributed in 1000–3000m2 and 30–500m2 
in the 2008 Wenchuan earthquake and the 2017 Jiuzhaigou earth-
quake, respectively. Therefore, the individual coseismic landslide 
in the 2022 Luding earthquake displays another characteristic of 
small size compared to the 2008 Wenchuan earthquake and the 
2017 Jiuzhaigou earthquake.

The landslides induced by the 2017 Jiuzhaigou earthquake and 
2022 Luding earthquake are most small- and medium-sized. In con-
trast, a significant number of large-sized landslides were triggered 

with millions of square meters in the 2008 Wenchuan earthquake, 
resulting in more than 800 landslide dam barrier lakes (Huang and 
Fan 2013; Li et al. 2016; Xu et al. 2014). The former two earthquakes 
are both slip-strike faults with blind fault identification, which 
generally results in small and scattered landslides. In addition, 
the approximately symmetric distribution of coseismic landslides 
along the seismogenic fault implies the characteristics of this focal 
mechanism (Fan et al. 2018; Gorum et al. 2014). More specifically, 
the amount of small-sized coseismic landslides in the 2022 Luding 
earthquake is more than that in the 2017 Jiuzhaigou earthquake. This 
reason may be attributed to the fact that the 2022 Luding earthquake 

Fig. 13  Virtual slope represen-
tation showing the coseismic 
landslide distribution in differ-
ent portions of the slope.  
a All landslides triggered by the 
Luding earthquake; b landslides 
in the range of PGA greater than 
0.6 g; c 0.5 to 0.6 g; and d less 
than 0.5 g. The marker size is 
proportional to the logarithm 
of the landslide area, and the 
background color represents 
the relative landslide number 
density

Fig. 14  Overall coseismic landslide comparison between different earthquakes in a area and b quantity
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is located at the Y-shaped junction of the three major faults with 
active tectonic activity and fragmentized rock mass breakage. In 
addition, the lithology of the 2022 Luding earthquake-affected area 
is mainly granite, which is harder than the limestone in the 2017 
Jiuzhaigou earthquake-affected region. Therefore, the probability of 
inducing medium- and large-sized landslides is smaller than that of 
the 2017 Jiuzhaigou earthquake. In addition, with the development 
and support of higher-resolution satellite- and UAV-based images, 
the interpretation of small-scale landslides is more sufficient and 
accurate, significantly improving the fitting performance.

Conclusion
In this paper, we proposed a comprehensive workflow to investi-
gate the coseismic landslides triggered by the 2022 Ms6.8 Luding 
earthquake. We first estimated the coseismic landslides through 
the prediction model immediately after the earthquake, grasping 
the overall condition of the induced geological hazards. With the 
acquisition of multi-source remote sensing images, the detailed 
coseismic landslide inventory was achieved by combining artificial 
intelligence algorithms and visual inspection. In total, 5336 land-
slides were finally recognized up till now, with an area of 28.53km2.

The coseismic landslide obviously developed on both sides of 
the river and road close to the seismogenic fault. Their elevation, 
slope, and aspect are concentrated in 1000–2400 m, 25–55°, and E 
and SE. The main lithology of the induced landslide is acid plutonic 
rocks, followed by mixed sedimentary rocks and siliceous sedimen-
tary rocks. Compared to the other earthquakes in southwestern 
China, the total coseismic landslide area is larger, but the individual 
scale is smaller, which is the most significant characteristic of this 
event. In more detail, extensive shallow landslides at the foot of 
slopes are induced, which might be resulted from the river inci-
sion, lateral sediment supply, and anthropogenic interferences with 
medium and low ground shaking in these regions by the Luding 
earthquake. In the future, we will further explore the controlling 

factors behind this development pattern and its profound impact 
on the long-term evolution of the geological environment.
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