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ABSTRACT 

Earthquake-triggered (coseismic) landsliding is among the most lethal of disasters, and rapid response is 
crucial to prevent cascading hazards that further threaten lives and infrastructure. Current prediction 
approaches are limited by oversimplified physical models, regionally focused databases, and retrospective 
statistical methods, which impede timely and accurate hazard assessments. To overcome these constraints, 
we developed the first comprehensive global database of ∼40 0 0 0 0 landslides associated with 38 of the 
most catastrophic earthquakes over the past 50 years. Leveraging this extensive dataset, we developed 
advanced deep-learning models that predict the probability of landsliding for any earthquake worldwide 
with an average spatial accuracy of ∼82% in less than a minute, without relying on prior local knowledge. 
Our framework enables swift disaster evaluation during the critical early hours following an earthquake 
while also enhancing pre-event hazard planning. This study offers a scalable and efficient tool to mitigate the 
catastrophic impacts of earthquake-triggered landslides, representing a transformative advance in global 
geohazard prediction. 
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total 90 0 0 fatalities [7 ]. Landslides also frequently 
delay rescue responses to earthquake-affected re- 
gions, greatly amplifying loss of life and suffering 
[8 ]. 

While rapid response is fundamental for limiting 
casualties and mitigating the multi-hazard chains 
that stem from catastrophic earthquakes [9 ], the first 
priority in mountain regions is to evaluate: where are 
the landslides? Remote sensing is a notable recent 
advance over field reconnaissance [10 ,11 ], but even 
so, the timely avai labi lity of cloud-free, large-scale 
imagery depends on favorable weather and satellite 
trajectories [12 ]. In answer to such urgent chal- 
lenges, a real-time predictive model of potential land- 
slide distribution would greatly assist preliminary 
assessments of hazards immediately post-earthquake 
prior to the arrival of remote-sensing data (some- 
times delayed by several days or even weeks) [13 ]. 
Such a tool would bolster appreciably the resilience 
of mountain populations to earthquake hazards [14 ]. 

Research efforts aimed at predicting landslides 
can be broadly classified into physics-based and 
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NTRODUCTION 

arthquakes are among the most persistent natural
atastrophes, causing severe loss of life and abrupt
conomic disruption [1 ]. Major earthquakes (mag-
itude, Mw ≥ 7) occur on average every month
orldwide ( https://www.usgs.gov/programs/
arthquake-hazards/lists-maps-and-statistics) a nd
ave claimed ∼750 0 0 0 lives in the two decades
998–2017 ( https://www.who.int/health-topics/
arthquakes#tab=tab_1). Earthquake-triggered
coseismic) landslides (abbreviated to ‘landslides’
ereafter) are the third largest cause of associated
atalities—after bui lding col lapse and tsunami
ooding [2 ,3 ]—and specifically in mountainous
andscapes they intensify hazardous congruences of
arthquakes [4 ]. For example, the Mw 7.9 Wenchuan
China) earthquake triggered nearly 200 000 land-
lides [5 ], ki l ling > 20 0 0 0 people ( > 30% of the
eath-toll), and causing USD 30 billion in economic
osses (25% of the total) [6 ]. The Mw 7.9 Gorkha
Nepal) earthquake induced > 25 0 0 0 landslides

nd debris flows, which caused more than 40% of the 

byOxford University Press on behalf of China Science Publishing &Media Ltd. This is anOpen Access article distributed under the terms of the Creative
ttps://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original 
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ata-driven models [15 ]. Physics-based models
nalyze hi l lslope deformation and rupture under
he force of earthquakes via mechanical analy-
is. An early key example, the Newmark method
16 ], was devised at the laboratory scale to assess
oseismic ruptures on hi l lslopes and the li ke-
ihood of landslides. Jibson, Harp and Michael
17 ] built upon this approach to accommodate
ailure at landslide-scale for the first time. While
hese physics-based approaches allow for intuitive
bservation and simulation of the deformation
haracteristics and propagation of landslides,
heir practical application for analyzing exten-
ive landslides simultaneously at large scale is
onstrained by their detailed physical parame-
er requirements, which demand comprehensive
nderstanding of the physical mechanisms [18 ].
ata-driven models, by contrast, aim to reveal
he distribution pattern of landslides via statistical
nalysis of past earthquake events. This approach
redicts potential landslides under differing seismic
onditions by establishing a functional relationship
etween the probability of landslide occurrence
nd known or inferred instability factors [19 ,20 ].
ompared to the physics-based approach, data
cquisition and processing demands are notably
ess for data-driven models. Consequently, a
arge number of data-driven models have been
roposed by learning from the training sam-
les derived from the growing catalogue of past
vents [21 ,22 ]. 
Forecasting landslides involves determining the

ikelihood of ‘when’ they will occur and ‘where’ they
i l l occur (the latter is also known as susceptibility).
ccurately and promptly predicting landslides is
hallenging due to event-to-event variability and
odel applicability [23 ]. Current limitations with

andslide prediction can be framed in terms of
hree general perspectives: (i) traditional statistical
nalyses [24 ] and machine-learning algorithms [25 ]
oth typically establish a linear (or non-linear) map-
ing relationship between landslide likelihood and
elected indicators, which often leads to overpre-
iction of the spatial footprint of landslide-affected
i l lslopes [26 ]. Deep learning, by contrast, is capa-
le of abstracting higher-level features from input
actors without intervention, providing superior
tting capabilities with a complex model structure
27 ,28 ]. (ii) Susceptibility analysis, as convention-
lly applied, is based on models trained in hindsight,
hich is not strictly prediction. If the goal is to has-
en emergency rescue globally, the required model
s one that can predict landslides without any prior
ocal labels. (iii) Most control indicators adopted as
odel inputs are prone to being event specific, as
pposed to universal. Therefore, identifying control
Page 2 of 12
indicators that perform well at regional- or even 
global-scale would be a major advance. With this in 
mind, we should begin first of all with the question 
of whether it is feasible for a regional- or even global-
scale landslide predictive model to be derived. 

With the aim of investigating how and why land- 
slides develop during earthquakes under differing 
boundary conditions, we compiled a representative 
global selection of nearly 40 0 0 0 0 coseismic land-
slides from the past, establishing the largest catalog 
to date. Fourteen primary control indicators (PCIs) 
governing large-scale landsliding were identified and 
a deep learning-based algorithm was devised to test 
the validity of a regional- versus global-scale model 
for predicting landslides triggered by earthquakes. 
We demonstrate that our predictive model is indeed 
feasible and performs well at the global scale, herald- 
ing a much-anticipated advance in the geohazard 
sciences. 

RESULTS 

Model construction of global 
earthquake-triggered landslide 

prediction 

The most intensive coseismic landsliding world- 
wide falls broadly along two primary belts marking 
collisional plate tectonic boundaries: the Circum- 
Pacific (CP) belt and the Alpine-Himalayan (AH) 
belt [29 ]. We subdivide these two tectonic regions 
into three climatic zones [30 ]: cold, temperate and 
equatorial (Fig. 1 ). 

From a global database of Mw ≥ 6 earthquakes 
compiled from previous studies [31 ], we selected 38 
events (Fig. 1 ) with landslide inventories conform- 
ing to strict criteria for data quality (see Methods). 
The 38 earthquakes yielded a dataset of 398 698 
landslides mapped within the CP and AH belts 
(Fig. 1 ; see Table S1). From this dataset we iden- 
tified (see Methods and Supplementary Note 1) 
14 PCIs held to govern landslide susceptibil- 
ity based on: topography (slope, aspect, relief, 
terrain roughness, plan curvature, topographic po- 
sition index [TPI]); geo-ecology (lithology, soil 
type, land cover, normalized difference vegeta- 
tion index [NDVI]); hydrology (distance to river, 
topographic wetness index [TWI]); and seismol- 
ogy (distance to fault, peak ground acceleration 
[PGA]). 

To optimize deep learning-based prediction, 
we implemented a three-step design. (i) Model 
training: an individual seismic event was isolated 
for testing with the remainder serving to train the 
models, ensuring prediction independence. (ii) Net- 
work architecture: we developed a multi-scale fully 
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onvolutional regression network (see Methods),
hich expands the spatial scope of feature extrac-
ion, and is beneficial for capturing both local and
lobal triggering and environmental information.
nd (iii) model validation: we employed metrics
ased on a confusion matrix and receiver operat-
ng characteristic (ROC) from predictions versus
round truth comparison, including area under the
OC curve (AUC), F1 score, precision, recall, over-
ll accuracy (ACC), and Kappa, to evaluate model
erformance. 
Page 3 of 12
In order to demonstrate the predictive capabil- 
ities of our model on regional and global scales, 
we selected a representative earthquake from each 
of the five regions (Fig. 1 ) as a case study using
the two models. From the CP belt, we selected the
2021 Nippes earthquake (equatorial, Haiti), the 
2016 Kaikoura earthquake (temperate, Aotearoa 
New Zealand), and the 2002 Denali earthquake 
(cold, USA). From the AH belt we selected the 2022
Luding earthquake (temperate, China), and the 
2015 Gorkha earthquake (cold, Nepal). 
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ow well do primary control indicators 
redict landslides? 
he top three performing control indicators are
GA, hi l lslope angle, and lithology (Fig. 2 ) in each
egion; these three remain at the crux of whether
andsliding wi l l occur, or not, as they directly trans-
ate the sudden triggering force (PGA), the gravity
orce ( hi l lslope angle), and the ruptured material
lithology). Relief (strongly correlated with slope)
nd terrain roughness also perform strongly in
ost regions. Six indicators (soil type, distance to
ault, TPI, land cover, TWI, and plan curvature) are
oderate performers, and three indicators (distance
o river, NDVI, and aspect) are weakest (Fig. 2 ). 

eep learning applied to landslide 

rediction 

he predictive maps align closely with the actual
andslides that occurred during the test seismic
vents (Fig. 3 for the optimal model and Fig. S1
Page 4 of 12
for the underperformed model). Mean AUC and 
ACC of the global-scale predictions in these five 
cases reached 83.4% and 77.3%, which are remark- 
ably high for independent scenarios devoid of any 
prior labels. Their average F1 and Kappa attained 
77.5% and 0.546, respectively, thereby indicating 
a well-balanced performance for both high- and 
low-susceptibility areas. The overall performance of 
the regional-scale model is slightly better than that 
of the global scale, with average AUC, ACC, F1, and 
Kappa of 84.0%, 77.5%, 77.6%, and 0.551, respec- 
tively. The model based on global data contains a 
more comprehensive and varied database, yielding 
more balanced parameter training and ensuring a 
lower limit of prediction for any outcome. While 
the regional-scale model can optimize parameter 
weighting under similar background data and en- 
hance the upper limit of targeted prediction, it is 
naturally more prone to the limiting effects of small 
sample size (see Table S2). This effect also accounts 
for the absence of some strong performers (e.g. 
PGA and lithology) among the PCIs in the cold CP 
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odel (Fig. 2 ). Supplementary Note 3 demonstrates
he detailed performance of the global and regional
odels for each test event. 

ncertainty arising from uneven data 

uality 
lthough the predictive performance is robust to
he uncertainty of input data (e.g. landslide inven-
ory and PGA) (see Supplementary Note 4), it is
everely limited by the varying sources of inputs
vailable. Most of our PCIs are derived from digital
levation models (DEMs), seismic parameters, and
ault inventories—all of which are susceptible to
he absence of satellite data, the deployment of seis-
ological stations, and the accuracy of geological
urveys, respectively. To i l lustrate our point, we
ake the 2022 Luding earthquake and draw three
omparisons based on differing sources of regional-
cale PCIs: an accurate data source versus a less
ccurate one, as follows: (i) DEMs generated from
W3D30 versus SRTM 90 m; (ii) PGA data from
Page 5 of 12
the China Earthquake Networks Center (CENC) 
versus the United States Geological Survey (USGS), 
and (iii) fault inventories from the China Active 
Faults Database (CAFD) versus the GEM Global 
Active Faults Database (see Supplementary Note 1). 

As expected, we find that the most favorable 
results are obtained when precise PCIs are utilized 
(AUC ∼88.5%). Based on our predictive landslide 
maps (Fig. 4 ), we find that: (i) susceptibility maps
generated v ia DEM w ith lower-resolution ( ∼90 m)
differ little from that generated via higher-resolution 
input ( ∼30 m). Certain susceptibility character- 
istics of a landslide may either become amplified 
to an entire pixel or get overwhelmed by the sur-
roundings, thereby leading to a greater homogeneity 
of the predicted probabilities from one location to 
another. (ii) USGS-derived PGA causes an overall 
shift of the predicted landslide extents towards the 
northeast relative to those based on CENC data, 
thereby strongly limiting prediction performance 
(and reflecting the dominance of PGA among the 
PCIs). And (iii) GEM yields inaccurate spatial dis- 
placement of the mapped faults demonstrated by the 
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AFD. The less accurate data (90 m DEM, USGS
GA, and GEM fault inventory) produce a decrease
n model AUC accuracy by 2.4%, 10.7%, and 14.1%,
espectively. These findings underscore the signifi-
ant influence of data quality on model performance,
articularly when predicting landslide occurrence
orldwide, where data sources exhibit considerable
ariability. This highlights the need for continuously
pdated, high-quality, and consistent datasets, while
lso emphasizing the necessity of incorporating
ncertainty into predictive frameworks. 

ISCUSSION 

verall performance of the global- and 

egional-scale model 
he regional-scale models perform well in most
cenarios, as is expected given the fact that they mir-
or local characteristics of landslide development
nder comparable environmental conditions. Their
ajor limitation, however, is that they contain fewer
vent samples, which can lead to inadequate training
nd the potential for overfitting models in favor of
vents with more landslides (a notable issue with
he two cold regions, CP and AH). By contrast, the
lobal-scale model considers the development of
andslides in different environments with abundant
Page 6 of 12
training samples. Accordingly, we settled upon a 
strategy that adopts regional-scale models where 
sufficient training events are available (i.e. in equa- 
torial CP, AH, and temperate AH regions), while 
applying global-scale models in the two regions 
that lack sufficient training (i.e. cold CP and AH 

regions). We anticipate that the occurrence of major 
earthquakes in these two cold regions wi l l provide 
new training samples that, over time, wi l l strengthen 
the performance of the regional models. 

To evaluate model performance considering 
all events, we adopted the leave-one-out cross- 
validation approach [32 ]. First, one landslide 
inventory is excluded as a test case, leaving the other 
inventories for model training; and second, the 
model is then applied to the landslide inventory 
that was excluded in the first step. Following an 
inversion approach, we ran the prediction model 38 
times (once for each of our landslide inventories) 
at the global- and regional-scale, respectively, and 
then quantified model performance via the indices 
of AUC, precision, recall, F1, accuracy, and Kappa 
(Fig. 5 ; see Table S3). 

Taking all historical events into account, the 
regional-scale model performs slightly better 
(1.15 ± 0.30%, 0.50 ± 0.49%, 0.80 ± 0.46%, 
and 1.61 ± 0.92% higher for AUC, F1, ACC, and 
Kappa, respectively) than the global-scale model. 
However, from the perspective of individual regions 
the comparison shifts. We find that a regional-scale 
model performs better when applied to the equato- 
rial CP, temperate CP, and temperate AH regions; 
hence, these models should be used for predicting 
future landslides. The global model, however, is the 
better choice for modelling events in the cold CP 

and AH regions. 

Advantages of a deep learning-based 

approach over machine learning 

To further test our approach, we compared it 
with machine-learning algorithms applied in prior 
studies [25 ]; namely, Logistic Regression (LR), 
Random Forest (RF), and Artificial Neural Net- 
work (ANN)—while maintaining the same training 
setups. We find our deep learning approach out- 
performs the machine-learning algorithms, with 
notable AUC improvements of 5.4%–8.2%, 2.7%–
4.7%, 15.7%–21.4%, 4.8%–21.8%, and 3.9%–9.1% for 
the 2021 Nippes event, 2016 Kaikoura event, 2002 
Denali event, 2022 Luding event, and 2015 Gorkha 
event, respectively (Fig. 6 ). 

The advantages of the deep learning-based 
approach for landslide prediction stems from 

its ability to automatically explore intricate 
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oupling mechanisms and impacts based on inputs
ith physical implications, and to generate novel
iscriminative features for learning—albeit often
eing non-interpretable [33 ]. This mechanistic
dvantage distinguishes it from previous machine
earning-based algorithms and underscores its ex-
eptional success in landslide prediction. Our deep
earning-based prediction model is capable of com-
rehensively investigating and comprehending the
ntricate correlation between triggering factors and
nvironmental conditions, which has been a persis-
ent challenge [34 ,35 ]. Accordingly, our approach
s proficient in accurately predicting the landslide
istribution of earthquakes worldwide. 

ur model tested with a hypothetical Mw 

.5 earthquake scenario 

o underscore the critical role of coseismic land-
lide prediction and the advanced state of our deep
earning-driven model, we simulated a scenario of
he devastating Mw 7.5 earthquake. Our simulated
cenario (see Supplementary Note 5) targets the
Page 7 of 12
Anninghe fault in Mianning, China (epicenter: 
102.30°E, 28.54°N), a densely populated moun- 
tainous area located within the temperate AH belt. 
Employing the advanced prediction capabilities 
of our regional model, the spatial probability of 
earthquake-triggered landslides was determined in 
just 34 seconds—potentially several days ahead of 
the availability of large-scale imagery. When this 
real-time predictive data is overlaid with population 
and infrastructure within the seismic zone, the 
associated landsliding is shown to directly threaten 
∼70 0 0 0 people (see Fig. S2) [36 ]. Prompt pre-
diction of landslides serves as an invaluable tool 
for emergency management, offering critical guid- 
ance for hazard mitigation and potentially saving 
countless lives in the vital early hours of rescue 
efforts. 

Despite the substantial advancements made 
by our models in predicting earthquake-triggered 
landslides, several challenges remain that must be ad- 
dressed for broader applicability and deeper insight. 
On one hand, the non-interpretable nature of the 
deep learning-based model not only hinders under- 
standing of the underlying physical mechanisms but 
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lso impedes generalizability to diverse and under-
epresented regions. Future work should focus on
eveloping a framework that couples physical mech-
nisms with data-driven learning, facilitating rapid
nd accurate predictions even under conditions
f limited data and computational resources. This
ould enable the development of a robust, globally
pplicable model capable of delivering precise pre-
ictions in diverse environments. On the other hand,
lthough our study focuses on coseismic landslides,
he underlying multi-channel fully convolutional
rchitecture can be readily repurposed for rainfall-
nduced events. By substituting seismic indicators
e.g. PGA and fault proximity) with hydrometeo-
ological variables, such as cumulative antecedent
ainfall, intensity-duration metrics, and soil moisture
ndices, the network enables one to learn the spatial
hresholds governing rainfall-induced slope failure.
urther, embedding sequential rainfall maps as a
emporal channel would allow the model to capture
he evolution of subsurface saturation and pore-
ressure buildup. Together, these adaptations would
ield rapid, high-resolution predictive maps for both
Page 8 of 12
seismic- and rainfall-induced hazards, offering a uni- 
fied, operational tool that supports real-time emer- 
gency response and pre-event planning on a global 
scale. 

METHODS 

Global dataset of earthquake-triggered 

landslides 
Abundant and diverse landslide training sam- 
ples are the foundation of generalized prediction 
through data-driven methods. Herein, we con- 
ducted an extensive investigation of earthquakes 
exceeding Mw ≥ 6 worldwide since the 1970s. To 
optimize the utilization of current inventories while 
mitigating the influence of substandard data, we 
implemented three assessment criteria [23 ,33 : (i) 
landslides were depicted as polygons rather than 
points; (ii) each polygon was covered by a landslide 
footprint entirely; and (iii) the boundary of each 
landslide was explicitly indicated. Consequently, 
we scrutinized 38 inventories possessing compe- 



Natl Sci Rev, 2025, Vol. 12, nwaf179

t  

m  

r  

p  

e  

e  

l  

e  

t  

g  

c  

p  

r  

(
 

l  

p  

c  

(  

(  

t  

v  

d  

a  

u  

b  

w  

f  

o  

t  

p  

T
 

w  

u  

f  

d  

t  

a  

o  

l  

f  

d  

v  

a  

w  

4  

p
0  

w  

m  

c  

l  

r  

a  

l  

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

af179/8128033 by guest on 13 June 2025
ent landslide records and rectified conspicuous
issing and false identifications by incorporating
emote sensing-based visual interpretation and so-
histicated landslide intelligent recognition, which
mploys a change detection-based multiple classifier
nsemble strategy [37 ], thereby ensuring that the
abeled landslides followed rather than preceded the
arthquake in question. Ultimately, we amalgamated
he authenticated labels of the events, yielding a
lobal database of 398 698 coseismic landslides,
ategorized into five classes (i.e. Equatorial CP, Tem-
erate CP, Cold CP, Temperate AH, and Cold AH
egions) with similar environmental backgrounds
see Table S1). 
We identified a suite of 17 PCIs governing

andslide susceptibility [38 ] based on topogra-
hy (slope, aspect, relief, terrain roughness, plan
urvature, profile curvature, TPI), geo-ecology
lithology, soil type, land cover, NDVI), hydrology
distance to river, TWI), and seismology (dis-
ance to fault, focal mechanism, PGA, peak ground
elocity [PGV]) factors, where the extents were
etermined in accordance with the seismic-affected
reas based on ShakeMaps [39 ]. The data config-
rations of landslide geospatial labels (comprising
oth landslide and non-landslide records) along
ith their corresponding attributes were trans-
ormed into raster maps with a spatial resolution
f 30 m WGS 1984 geographic coordinate sys-
em in compliance with the initial topographical
arameters. The utilized datasets are compiled in
able S4. 
Based on the analysis of various events world-

ide, landslide distributions exhibit distinct patterns
nder the 17 PCIs considered (see Fig. S3). The
requency of landslides correlates negatively with
istances to faults and rivers. This reflects the con-
ributions of strong seismic forces to slope collapse
nd demonstrates the decrease in shear strength
f rock caused by fluvial incision, which influences
ong-term slope adjustment and stability. For most
actors, the landslide frequencies present skewed
istributions with concentration in specific inter-
als. For instance, landslides conditioned by slope
nd relief follow a typical (and similar) pattern,
 ith frequenc y modes ranging 18–48° in slope and
0 0–120 0 m in relief. Landslides follow similar
atterns regarding PGA (modes spanning 0.20–
.45 g) and PGV (modes spanning 40–90 cm/s),
hich indicate the triggering aggregation of ground
otion. Other factors (e.g. lithology, soil type, land
over, and NDVI) exhibit apparent correlations with
andslide distribution within an earthquake-affected
egion. However, their natural attributes may vary
cross different seismic zones. The statistics of
andslide frequencies with respect to most factors
Page 9 of 12
provide limited insights from a global perspec- 
tive. Establishing an effective prediction approach 
requires quantitatively revealing the controlling 
factors for the landslides within a specific area of 
consideration. 

Primary control indicators of 
earthquake-triggered landslides 
On one hand, a unified physical initiation mecha- 
nism suggests the plausibility of a universal landslide 
model [40 ]; but on the other hand, the interde-
pendence of landslide-inducing factors varies from 

region to region, resulting in substantial dispari- 
ties in the distribution, morphology, and scale of 
landslide development [41 ]. Considering this, an 
alternative approach is to develop models in diverse 
environments with consideration of the tectonic and 
climatic conditions. We targeted the two primary 
seismic belts; namely, the CP and AH belts, as a
basis for model categorization in terms of tectonic 
environment [42 ]. These tectonic subdivisions were 
subsequently subdivided based on a global climate 
classification [30 ]. In accordance with the evaluated 
conditions, the collected landslide events were 
categorized into distinct regions for the purpose of 
region-specific model development. 

Prior to establishing the global- and region-based 
models, it is imperative to circumvent multicollinear- 
ity, where multiple independent variables are linearly 
interrelated, resulting in flawed modeling and atten- 
uated predictive capacity due to erroneous system 

analysis [43 ]. Consequently, to identify the optimal 
set of PCIs to use as inputs for model training, a
multicollinearity analysis was carried out to assess 
the appropriateness of the inputs based on their non- 
independence. We employed an index, namely the 
variance inflation factor (VIF), which quantifies the 
extent to which collinearity increases the variance 
of an estimated regression coefficient. The degree of 
correlation between one variable and other variables 
in linear regression can be gauged via the R -squared
( R2 ) value, where the variable of interest is predicted
by the remaining factors [44 ]. The VIF for a variable
can therefore be calculated as in Equation 1 : 

VIF = 1 
1 − R2 

i 
(i = 1 , 2 , . . . , m ) , (1) 

where R2 
i represents the coefficient between the i th 

independent variable and the other m − 1 indepen- 
dent variables. The greater the VIF value, the more
pronounced the collinearity between a variable and 
the residual variables. Some studies prefer to use the 
tolerance (TOL) instead as in Equation 2 , which is
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he reciprocal of VIF [45 ]: 

TOL = 1 − R2 
i = 1 

VIF 
( i = 1 , 2 , . . . , m ) . 

(2)

 VIF value exceeding 10 or a TOL value below
.1 indicates a possible multicollinearity scenario,
here the variable is strongly correlated with the
ther variables, and the variable with the highest
IF or the lowest TOL value is eliminated [25 ].
e re-evaluated the VIF for the residual variables
nti l they al l satisfied the criteria. Considering the
otential variations in landslide developmental ap-
roaches and predictive models, PCIs were selected
eparately for global and regional units. 
To examine the outcomes of the multicollinear-

ty analysis, Pearson’s correlation coefficient r, a
easurement of the linear correlation between any
wo independent variables, was calculated for the
esidual factors as in Equation 3 [46 ]: 

r = 1 
n − 1 

n ∑ 

j=1 

(
Xj 

σx 

) (
Yj − Ȳ 

σy 

)
, (3)

here n is sample size, Xj and Yj are the individual
amples of variable X and Y indexed with j, X̄ and
 ̄are the means of the samples of variable X and Y ,
hile σx and σy are the standard deviations of the
amples of variable X and Y . A linear correlation be-
ween two variables is deemed significant if the abso-
ute value of their coefficient exceeds 0.6 [47 ]. In case
f independent variables exhibiting high correlation,
he one with a higher VIF value (as determined by
ulticollinearity analysis in the previous step) was
liminated until the desired standard was satisfied. 
Subsequently, we evaluated the relative impor-

ance of the PCIs across various regions through
he employment of information gain (IG), a rapid
ttribute ranking technique that serves to prelim-
narily demonstrate the explanatory potential of
ndependent variables (i.e. PCIs) for the dependent
ariable (i.e. landslide). IG is a feature evaluation
ethod that measures the anticipated reduction

n entropy, which is a measurement of disorder or
mpurity, resulting from the partitioning of a dataset
ased on a given attribute [48 ]. Therefore, the IG
alue for a PCI Pk and the landslide occurrence Q 

an be computed using Equation 4 : 

IG ( Q , Pk ) = H ( Q ) − H ( Q | Pk ) , (4)

here H(Q ) denotes the entropy value of Q , and
(Q | Pk ) denotes the entropy of Q conditioned
n a PCI Pk . Hence, the PCIs providing more
nformation have higher IG values. 
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Earthquake-triggered landslide 

prediction model 
The dataset spans ∼50 years during which remote 
sensing technology has advanced. Accordingly, all 
landslide labels as well as PCI inputs were resampled 
to a uniform 30 m resolution, ensuring data consis- 
tency and enabling subsequent predictive modeling. 
To address any potential bias arising from the over- 
representation of landslides from a single event, 
we applied a refined labeling approach. In areas 
identified as landslides, the label was set to 1, while 
in background regions values fall between 1 and 0, 
as defined by the Poisson equation with Dirichlet 
boundary conditions (see Supplementary Note 2). 
The input labels were generated through a slid- 
ing window approach with 20% spatial overlap 
across seismic-affected regions. Each window con- 
sists of 448 × 448 × m pixels, corresponding to 
13.44 km × 13.44 km at 30 m resolution, with m de-
noting the number of input channels. These patches 
along with their associated PCIs were then used as 
training samples. For the region-based model, we 
selected an individual event for testing purposes, 
with the remaining events serving as the training set, 
thereby ensuring prediction independence. Simi- 
larly, in the construction of the global model, the test 
event of each region was combined to form a new 

global test set, while the samples of the remaining 
events were integrated as the new global training set. 
This strategy maintains the independence of event 
prediction while facilitating a comparison of results 
from both models. 

To achieve accurate prediction of landslide 
events, we devised a multi-scale architecture via a 
fully convolutional regression network (see Fig. S4). 
Our model framework is meticulously designed to 
capture the fundamental conditions underpinning 
landslide occurrence. The input stratums are tai- 
lored to assimilate landslide attributes, where the 
input indicators are formatted as height H, width W , 
and feature count, and the feature dimension of the 
first layer is set as N = 32 . The encoder component
of the network is an amalgamation of a sequence 
of convolutional strata and pooling tiers, yielding a 
cascade of feature extraction cycles that engender 
a spatial matrix characterized by dimensions H/ 4 , 

/ 4 , 16 N. To further refine the predicted efficacy,
a convolutional block attention module (CBAM) 
is interwoven between the decoder and encoder 
segments [49 ]. This addition is instrumental in fo- 
cusing on key information. In the decoder domain, 
a series of deconvolution layers and up-sampling 
layers are arranged, connecting with the encoded 
features for gradual decoding and reconstruc- 
tion, ultimately producing an output layer result 
( H, W , 1). 
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To quantitatively assess the accuracy of model
utput, we utilized indicators based on confusion
atrix and ROC, which is a two-dimensional plot
f true positive rate on the Y-axis versus false pos-
tive rate on the X-axis. These indicators include
he AUC, F1, precision, and recall, which serve to
valuate the performance of the predicted landslide
arget. AUC is a quantitative measure of model ac-
urac y w ith a value between 0.5 and 1, where higher
alues indicate better performance. Furthermore,
e computed the indices of ACC and Kappa coef-
cient, which take into account the non-landslide
erformance as well. It is worth noting that to
revent excessive non-landslide pixels from being
ncluded as validation data in a test event (which
ould lead to inflated indices), we considered those
ixels covered entirely by landslides and an equal
umber of randomly selected non-landslide pixels
ith PGA exceeding 0.12 g for verification [50 ]. 
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